Matches in SemOpenAlex for { <https://semopenalex.org/work/W1978110872> ?p ?o ?g. }
- W1978110872 endingPage "1739" @default.
- W1978110872 startingPage "1731" @default.
- W1978110872 abstract "The effort to improve the energy conversion efficiency of polymer solar cells has led to the design of novel donor polymers. To improve open circuit photovoltages (OCVs) and the spectral coverage of the solar spectrum, researchers have looked for materials with high HOMO values, an easily modified electronic structure, and sufficient electronic transport within the polymers. One advance in design from our laboratories has been the development of a class of alternating polyfluorene copolymers (APFOs), which can be combined with fullerenes to make bulk heterojunction materials for photovoltaic conversion. This Account describes copolymers of fluorene that we designed to expand the range the optical absorption of solar cells to include wavelengths out to 1000 nm. In most cases, we combine these polymers with acceptors from the fullerene family, typically the phenyl C61 butyric acid methyl ester (PCBM) molecule, to generate solar cell materials. The synthesis of alternating copolymers of fluorene with various donor−acceptor−donor elements provides the opportunity to shift both HOMO and LUMO, which we have followed by electrochemical spectroscopy. Moving the LUMO of the APFOs farther from the vacuum level eventually leads to a situation where the driving force for photo-induced charge transfer from polymer donor to fullerene acceptor goes to zero, resulting in inefficient charge generation. Moving the HOMO level closer to the vacuum level reduces the OCV of devices made from bulk heterojunction blends. As we move the bandgap toward lower energies and increase the overlap of optical absorption with the solar spectrum, both these events eventually occur. In devices based on these APFO/fullerene blends, the performance depends on the OCV, the photocurrent under solar illumination, and the fill factor. The fill factor is influenced by electrical transport and charge generation. Optimizing these parameters requires new solutions to the perennial conflict between optically thin devices, where electrical extraction of charge is not a limitation, and the optically thick devices, where extraction of charge is hampered by trapping and recombination. As a result, we have developed methods to trap light in optically thin devices. When the thin film flexible solar cells are folded, multiple reflection between adjacent solar cells leads to a longer path length for the photon through the devices and considerable improvement of the optical dissipation in the active material. These optical tricks also enable an alternative route to tandem devices, where two different bandgap materials are located on adjacent folds. Thus light not absorbed in one cell is reflected onto the next cell to produce an effective optical series arrangement. Using experiments and simulations of the light trapping effects, we demonstrate power conversion efficiency enhancements of up to a factor of 1.8." @default.
- W1978110872 created "2016-06-24" @default.
- W1978110872 creator A5041512952 @default.
- W1978110872 creator A5056662283 @default.
- W1978110872 creator A5071216117 @default.
- W1978110872 date "2009-10-16" @default.
- W1978110872 modified "2023-10-18" @default.
- W1978110872 title "Alternating Polyfluorenes Collect Solar Light in Polymer Photovoltaics" @default.
- W1978110872 cites W1966373921 @default.
- W1978110872 cites W1966659696 @default.
- W1978110872 cites W1974585980 @default.
- W1978110872 cites W1980064852 @default.
- W1978110872 cites W1980943941 @default.
- W1978110872 cites W1982387068 @default.
- W1978110872 cites W1983077471 @default.
- W1978110872 cites W1990467619 @default.
- W1978110872 cites W1990624062 @default.
- W1978110872 cites W1992139458 @default.
- W1978110872 cites W1994199807 @default.
- W1978110872 cites W1995832582 @default.
- W1978110872 cites W2003533093 @default.
- W1978110872 cites W2005753285 @default.
- W1978110872 cites W2007005474 @default.
- W1978110872 cites W2015257245 @default.
- W1978110872 cites W2015404131 @default.
- W1978110872 cites W2016521522 @default.
- W1978110872 cites W2024698182 @default.
- W1978110872 cites W2024839325 @default.
- W1978110872 cites W2026529180 @default.
- W1978110872 cites W2027220507 @default.
- W1978110872 cites W2030099439 @default.
- W1978110872 cites W2032695513 @default.
- W1978110872 cites W2033343549 @default.
- W1978110872 cites W2034512423 @default.
- W1978110872 cites W2039690657 @default.
- W1978110872 cites W2041371572 @default.
- W1978110872 cites W2044912211 @default.
- W1978110872 cites W2050461594 @default.
- W1978110872 cites W2052646098 @default.
- W1978110872 cites W2052948883 @default.
- W1978110872 cites W2053442354 @default.
- W1978110872 cites W2054048682 @default.
- W1978110872 cites W2056544067 @default.
- W1978110872 cites W2057046508 @default.
- W1978110872 cites W2057811415 @default.
- W1978110872 cites W2058216799 @default.
- W1978110872 cites W2071391498 @default.
- W1978110872 cites W2074709927 @default.
- W1978110872 cites W2076967368 @default.
- W1978110872 cites W2078279387 @default.
- W1978110872 cites W2084503343 @default.
- W1978110872 cites W2087461504 @default.
- W1978110872 cites W2088805486 @default.
- W1978110872 cites W2089364192 @default.
- W1978110872 cites W2089537205 @default.
- W1978110872 cites W2094505911 @default.
- W1978110872 cites W2096316280 @default.
- W1978110872 cites W2101962044 @default.
- W1978110872 cites W2125081852 @default.
- W1978110872 cites W2129529288 @default.
- W1978110872 cites W2131091400 @default.
- W1978110872 cites W2138863028 @default.
- W1978110872 cites W2145666004 @default.
- W1978110872 cites W2156668998 @default.
- W1978110872 cites W4211160986 @default.
- W1978110872 doi "https://doi.org/10.1021/ar900073s" @default.
- W1978110872 hasPubMedId "https://pubmed.ncbi.nlm.nih.gov/19835413" @default.
- W1978110872 hasPublicationYear "2009" @default.
- W1978110872 type Work @default.
- W1978110872 sameAs 1978110872 @default.
- W1978110872 citedByCount "232" @default.
- W1978110872 countsByYear W19781108722012 @default.
- W1978110872 countsByYear W19781108722013 @default.
- W1978110872 countsByYear W19781108722014 @default.
- W1978110872 countsByYear W19781108722015 @default.
- W1978110872 countsByYear W19781108722016 @default.
- W1978110872 countsByYear W19781108722017 @default.
- W1978110872 countsByYear W19781108722018 @default.
- W1978110872 countsByYear W19781108722019 @default.
- W1978110872 countsByYear W19781108722020 @default.
- W1978110872 countsByYear W19781108722021 @default.
- W1978110872 countsByYear W19781108722022 @default.
- W1978110872 countsByYear W19781108722023 @default.
- W1978110872 crossrefType "journal-article" @default.
- W1978110872 hasAuthorship W1978110872A5041512952 @default.
- W1978110872 hasAuthorship W1978110872A5056662283 @default.
- W1978110872 hasAuthorship W1978110872A5071216117 @default.
- W1978110872 hasConcept C119599485 @default.
- W1978110872 hasConcept C121332964 @default.
- W1978110872 hasConcept C125287762 @default.
- W1978110872 hasConcept C127413603 @default.
- W1978110872 hasConcept C14158195 @default.
- W1978110872 hasConcept C15920480 @default.
- W1978110872 hasConcept C159985019 @default.
- W1978110872 hasConcept C162862793 @default.
- W1978110872 hasConcept C165801399 @default.
- W1978110872 hasConcept C178790620 @default.
- W1978110872 hasConcept C181966813 @default.