Matches in SemOpenAlex for { <https://semopenalex.org/work/W1978250896> ?p ?o ?g. }
- W1978250896 endingPage "70" @default.
- W1978250896 startingPage "55" @default.
- W1978250896 abstract "Five methods for estimating the mean growing season percent photosynthetic photon flux density (PPFD) were compared to continuous measurements of PPFD throughout the growing season within a young bigleaf maple stand on Vancouver Island (Canada). Measured PPFD was recorded continuously as 10-min averages over the growing season (May 18–October 14, 1996) using 52 gallium arsenide phosphide photodiodes in the understory and a LI-COR quantum sensor (LI-190SA) in the open. Photodiodes were randomly located on a systematic grid of points and represented a wide range of above canopy openings which were classified into three different types of light environments: closed canopy, gaps of various sizes, and open canopy. Objectives of this study were to compare different methods for estimating the growing season %PPFD and to determine the efficiency of these methods in the three light environments. At each photodiode location, instantaneous light measurements using a Ceptometer on sunny days around noon and a LAI-2000 Plant Canopy Analyzer were made and hemispherical canopy photographs were taken. 10-min averages recorded by the photodiodes during completely overcast sky conditions were used as surrogate values for a method that uses instantaneous measurements on overcast days. Finally, a new light model (LITE) developed to estimate growing season %PPFD in a deciduous canopy was tested. All these five methods provided estimates of growing season %PPFD and are much less time consuming than continuous measurements of %PPFD using photodiodes. The three most accurate (r2>0.89) methods to estimate the growing season %PPFD were the 10 min averages on overcast days, the diffuse non-interceptance calculated using the LAI-2000, and the gap light index (GLI) calculated from the hemispherical canopy photographs. These three methods performed similarly in each type of light environment. Although the relationship between the LITE model and the growing season %PPFD was good (r2=0.79), the model systematically underestimated light transmission. The instantaneous sunny days around noon method was the least efficient method (r2=0.68) for estimating the growing season %PPFD, although replacing instantaneous measures with the mean of two 10-min averages improved r2 to 0.84. Estimates on sunny days tended to be low in low light and high in high light. Practical considerations such as equipment availability, cost, sampling and processing time, sky conditions, and the number of microsites to be sampled should be taken into account in the selection of the suitable method for a particular study." @default.
- W1978250896 created "2016-06-24" @default.
- W1978250896 creator A5024064879 @default.
- W1978250896 creator A5049980648 @default.
- W1978250896 creator A5062325937 @default.
- W1978250896 date "1998-07-01" @default.
- W1978250896 modified "2023-10-18" @default.
- W1978250896 title "Comparison of various methods for estimating the mean growing season percent photosynthetic photon flux density in forests" @default.
- W1978250896 cites W1527630344 @default.
- W1978250896 cites W1968708508 @default.
- W1978250896 cites W1980090780 @default.
- W1978250896 cites W1981405452 @default.
- W1978250896 cites W1987216690 @default.
- W1978250896 cites W1994997256 @default.
- W1978250896 cites W1995449833 @default.
- W1978250896 cites W1996767388 @default.
- W1978250896 cites W2003237786 @default.
- W1978250896 cites W2015491719 @default.
- W1978250896 cites W2016085577 @default.
- W1978250896 cites W2019631033 @default.
- W1978250896 cites W2023491642 @default.
- W1978250896 cites W2026545617 @default.
- W1978250896 cites W2027837212 @default.
- W1978250896 cites W2028503809 @default.
- W1978250896 cites W2028825533 @default.
- W1978250896 cites W2029984822 @default.
- W1978250896 cites W2030888038 @default.
- W1978250896 cites W2045594623 @default.
- W1978250896 cites W2051205335 @default.
- W1978250896 cites W2061276521 @default.
- W1978250896 cites W2065050552 @default.
- W1978250896 cites W2067129341 @default.
- W1978250896 cites W2069161753 @default.
- W1978250896 cites W2069909093 @default.
- W1978250896 cites W2074201701 @default.
- W1978250896 cites W2081462633 @default.
- W1978250896 cites W2085449414 @default.
- W1978250896 cites W2092505599 @default.
- W1978250896 cites W2093884897 @default.
- W1978250896 cites W2108607090 @default.
- W1978250896 cites W2112742727 @default.
- W1978250896 cites W2113933693 @default.
- W1978250896 cites W2118553097 @default.
- W1978250896 cites W2127827133 @default.
- W1978250896 cites W2156108016 @default.
- W1978250896 cites W2167300550 @default.
- W1978250896 cites W2313225210 @default.
- W1978250896 cites W2323663421 @default.
- W1978250896 cites W2331937504 @default.
- W1978250896 cites W2406845681 @default.
- W1978250896 cites W2502879285 @default.
- W1978250896 cites W4233457104 @default.
- W1978250896 doi "https://doi.org/10.1016/s0168-1923(98)00082-3" @default.
- W1978250896 hasPublicationYear "1998" @default.
- W1978250896 type Work @default.
- W1978250896 sameAs 1978250896 @default.
- W1978250896 citedByCount "180" @default.
- W1978250896 countsByYear W19782508962012 @default.
- W1978250896 countsByYear W19782508962013 @default.
- W1978250896 countsByYear W19782508962014 @default.
- W1978250896 countsByYear W19782508962015 @default.
- W1978250896 countsByYear W19782508962017 @default.
- W1978250896 countsByYear W19782508962018 @default.
- W1978250896 countsByYear W19782508962019 @default.
- W1978250896 countsByYear W19782508962020 @default.
- W1978250896 countsByYear W19782508962021 @default.
- W1978250896 countsByYear W19782508962022 @default.
- W1978250896 countsByYear W19782508962023 @default.
- W1978250896 crossrefType "journal-article" @default.
- W1978250896 hasAuthorship W1978250896A5024064879 @default.
- W1978250896 hasAuthorship W1978250896A5049980648 @default.
- W1978250896 hasAuthorship W1978250896A5062325937 @default.
- W1978250896 hasBestOaLocation W19782508962 @default.
- W1978250896 hasConcept C101000010 @default.
- W1978250896 hasConcept C120665830 @default.
- W1978250896 hasConcept C121332964 @default.
- W1978250896 hasConcept C137660486 @default.
- W1978250896 hasConcept C139669111 @default.
- W1978250896 hasConcept C153294291 @default.
- W1978250896 hasConcept C195452092 @default.
- W1978250896 hasConcept C205649164 @default.
- W1978250896 hasConcept C38262639 @default.
- W1978250896 hasConcept C39432304 @default.
- W1978250896 hasConcept C58650310 @default.
- W1978250896 hasConcept C59822182 @default.
- W1978250896 hasConcept C73329638 @default.
- W1978250896 hasConcept C751236 @default.
- W1978250896 hasConcept C86803240 @default.
- W1978250896 hasConcept C91586092 @default.
- W1978250896 hasConceptScore W1978250896C101000010 @default.
- W1978250896 hasConceptScore W1978250896C120665830 @default.
- W1978250896 hasConceptScore W1978250896C121332964 @default.
- W1978250896 hasConceptScore W1978250896C137660486 @default.
- W1978250896 hasConceptScore W1978250896C139669111 @default.
- W1978250896 hasConceptScore W1978250896C153294291 @default.
- W1978250896 hasConceptScore W1978250896C195452092 @default.
- W1978250896 hasConceptScore W1978250896C205649164 @default.
- W1978250896 hasConceptScore W1978250896C38262639 @default.