Matches in SemOpenAlex for { <https://semopenalex.org/work/W1978266867> ?p ?o ?g. }
- W1978266867 endingPage "146" @default.
- W1978266867 startingPage "135" @default.
- W1978266867 abstract "Models of crop yield are important for the assessment and optimization of agricultural systems. It is therefore necessary that crop models are suitably validated. In many circumstances, a model is required for prediction at a particular spatial scale (e.g. at a within-field scale for precision agriculture), and validation of the model should account for this. We compared spatially explicit methods to validate a grain yield model applied to a transect of 267 contiguous 0.72 × 0.72 m plots on an arable field at Silsoe, eastern England. Grain yield of wheat was determined in each plot during two growing seasons, and a crop model was used to predict the yield retrospectively. We used two variants of the model, each of which used different spatial variables as input. Observed and predicted yield were then compared with non-spatial statistics, but also with wavelet transforms (i.e. the adapted maximal overlap discrete wavelet transform) and geostatistics (i.e. a linear mixed model estimated by residual maximum likelihood). The latter two are spatially explicit statistical methods. The most successful of the variants required as input the daily evolution of leaf-area index in each plot. Validation of this variant with spatial statistics revealed that (i) the variance of the predictions tended to underestimate that of the observations, particularly at relatively coarse spatial scales, however, in relative terms, the distribution of observed variance across scales was described adequately by the model; (ii) the correlation of the predictions with the observations was weak at relatively fine scales but strong at relatively coarse scales; (iii) there was evidence that the correlation of the predictions with the observations was not uniform across the transect at relatively fine scales, which was possibly due to the underlying soil variation; and, (iv) the spatial pattern of model error suggested that some of the fine-scale yield variation, especially in the first growing season, could be attributed to soil compaction, a process not included in the model. These details were not apparent with non-spatial statistics; wavelets and geostatistics are therefore more appropriate tools for validating a spatially distributed crop model. We conclude that this variant of the model is therefore potentially useful for precision agriculture where we need to predict crop behaviour within small management zones, at the scale of tens of metres, but not to predict yield at finer scales. We outline how the most appropriate statistical technique for a particular study depends on whether the observations can be sampled regularly in space, whether we can assume the statistics are uniform across the landscape, the number of spatial scales of interest, and whether interpolation of the predictions, observations, and errors is required." @default.
- W1978266867 created "2016-06-24" @default.
- W1978266867 creator A5028634354 @default.
- W1978266867 creator A5065363037 @default.
- W1978266867 creator A5078308216 @default.
- W1978266867 date "2008-09-01" @default.
- W1978266867 modified "2023-09-28" @default.
- W1978266867 title "Analysis of two variants of a spatially distributed crop model, using wavelet transforms and geostatistics" @default.
- W1978266867 cites W1966760175 @default.
- W1978266867 cites W1973614684 @default.
- W1978266867 cites W1975108950 @default.
- W1978266867 cites W1975751021 @default.
- W1978266867 cites W1989587237 @default.
- W1978266867 cites W2000084758 @default.
- W1978266867 cites W2002399918 @default.
- W1978266867 cites W2008371899 @default.
- W1978266867 cites W2011346418 @default.
- W1978266867 cites W2012917998 @default.
- W1978266867 cites W2015217934 @default.
- W1978266867 cites W2018937463 @default.
- W1978266867 cites W2025799060 @default.
- W1978266867 cites W2026887253 @default.
- W1978266867 cites W2028899960 @default.
- W1978266867 cites W2036123899 @default.
- W1978266867 cites W2036908963 @default.
- W1978266867 cites W2043531777 @default.
- W1978266867 cites W2045798585 @default.
- W1978266867 cites W2053714058 @default.
- W1978266867 cites W2059991980 @default.
- W1978266867 cites W2072109507 @default.
- W1978266867 cites W2074349517 @default.
- W1978266867 cites W2076728139 @default.
- W1978266867 cites W2079406027 @default.
- W1978266867 cites W2080109397 @default.
- W1978266867 cites W2085383225 @default.
- W1978266867 cites W2088304152 @default.
- W1978266867 cites W2091160936 @default.
- W1978266867 cites W2091637412 @default.
- W1978266867 cites W2103013472 @default.
- W1978266867 cites W2108447285 @default.
- W1978266867 cites W2126855287 @default.
- W1978266867 cites W2152407964 @default.
- W1978266867 cites W2153839947 @default.
- W1978266867 cites W2164681875 @default.
- W1978266867 cites W2169042936 @default.
- W1978266867 cites W2313339984 @default.
- W1978266867 cites W4253058909 @default.
- W1978266867 doi "https://doi.org/10.1016/j.agsy.2008.06.002" @default.
- W1978266867 hasPublicationYear "2008" @default.
- W1978266867 type Work @default.
- W1978266867 sameAs 1978266867 @default.
- W1978266867 citedByCount "8" @default.
- W1978266867 countsByYear W19782668672012 @default.
- W1978266867 countsByYear W19782668672020 @default.
- W1978266867 countsByYear W19782668672021 @default.
- W1978266867 crossrefType "journal-article" @default.
- W1978266867 hasAuthorship W1978266867A5028634354 @default.
- W1978266867 hasAuthorship W1978266867A5065363037 @default.
- W1978266867 hasAuthorship W1978266867A5078308216 @default.
- W1978266867 hasConcept C105795698 @default.
- W1978266867 hasConcept C118518473 @default.
- W1978266867 hasConcept C120217122 @default.
- W1978266867 hasConcept C121955636 @default.
- W1978266867 hasConcept C125572338 @default.
- W1978266867 hasConcept C126343540 @default.
- W1978266867 hasConcept C134121241 @default.
- W1978266867 hasConcept C144133560 @default.
- W1978266867 hasConcept C154881674 @default.
- W1978266867 hasConcept C154945302 @default.
- W1978266867 hasConcept C158709400 @default.
- W1978266867 hasConcept C159620131 @default.
- W1978266867 hasConcept C166957645 @default.
- W1978266867 hasConcept C167651023 @default.
- W1978266867 hasConcept C18903297 @default.
- W1978266867 hasConcept C191897082 @default.
- W1978266867 hasConcept C192562407 @default.
- W1978266867 hasConcept C196083921 @default.
- W1978266867 hasConcept C202444582 @default.
- W1978266867 hasConcept C205649164 @default.
- W1978266867 hasConcept C2778755073 @default.
- W1978266867 hasConcept C33923547 @default.
- W1978266867 hasConcept C41008148 @default.
- W1978266867 hasConcept C47432892 @default.
- W1978266867 hasConcept C58640448 @default.
- W1978266867 hasConcept C6557445 @default.
- W1978266867 hasConcept C71762439 @default.
- W1978266867 hasConcept C81692654 @default.
- W1978266867 hasConcept C86803240 @default.
- W1978266867 hasConcept C94747663 @default.
- W1978266867 hasConcept C9652623 @default.
- W1978266867 hasConceptScore W1978266867C105795698 @default.
- W1978266867 hasConceptScore W1978266867C118518473 @default.
- W1978266867 hasConceptScore W1978266867C120217122 @default.
- W1978266867 hasConceptScore W1978266867C121955636 @default.
- W1978266867 hasConceptScore W1978266867C125572338 @default.
- W1978266867 hasConceptScore W1978266867C126343540 @default.
- W1978266867 hasConceptScore W1978266867C134121241 @default.
- W1978266867 hasConceptScore W1978266867C144133560 @default.