Matches in SemOpenAlex for { <https://semopenalex.org/work/W1978283669> ?p ?o ?g. }
Showing items 1 to 85 of
85
with 100 items per page.
- W1978283669 abstract "Let R = lim Rn, and let B*(b*) denote the conjugate, B*, of a separable, infinite-dimensional Banach space with its bounded weak-* topology. We investigate properties of paracompact, topological manifolds M, N modelled on F, where F is either R. or B*(b*). Included among our results are that locally trivial bundles and microbundles over M with fiber F are trivial; there is an open embedding M M X F; and if M and N have the same homotopy type, then M X F and N X F are homeomorphic. Also, if U is an open subset of B*(b*), then U X B*(b*) is homeomorphic to U. Thus, two open subsets of B*(b*) are homeomorphic if and only if they have the same homotopy type. Our theorems about B*(b*)-manifolds, B*(b*) as above, immediately yield analogous theorems about B(b)-manifolds, where B(b) is a separable, reflexive, infinite-dimensional Banach space with its bounded weak topology. 0. Introduction. Let R' = lim Rn, and let B*(b*) denote the conjugate, B*, of a separable, infinite-dimensional Banach space with its bounded weak-* topology. The bounded weak-* topology is the finest topology agreeing with the weak-* topology on bounded sets. (The weak-* topology on B* is the smallest topology on which all the linear functionals {xlIx E B} are continuous where A(a) = a(x).) We investigate properties of paracompact, topological manifolds, M, N, modelled on F, where F is either R' or B*(b*). Included among our results are that locally trivial bundles and microbundles over M with fiber F are trivial; there is an open embedding M M x F; and if M and N have the same homotopy type, then M x F is homeomorphic to N x F. We also show that if U is open in B*(b*), then U x B*(b*) is homeomorphic to U. Thus, two open subsets of B*(b*) are homeomorphic if and only if they have the same homotopy type. Any theorem about B*(b*)-manifolds, B*(b*) as above, yields an analogous Received by the editors May 10, 1973 and, in revised form, April 17, 1974. AMS (MOS) subject classifications (1970). Primary 58B05; Secondary 46A99." @default.
- W1978283669 created "2016-06-24" @default.
- W1978283669 creator A5064751800 @default.
- W1978283669 date "1975-01-01" @default.
- W1978283669 modified "2023-09-24" @default.
- W1978283669 title "Manifolds modelled on $Rsp{infty }$ or bounded weak-* topologies" @default.
- W1978283669 cites W1487638357 @default.
- W1978283669 cites W1608457123 @default.
- W1978283669 cites W1984788263 @default.
- W1978283669 cites W1997506588 @default.
- W1978283669 cites W2022980586 @default.
- W1978283669 cites W2036286973 @default.
- W1978283669 cites W2048719034 @default.
- W1978283669 cites W2050181718 @default.
- W1978283669 cites W2053562301 @default.
- W1978283669 cites W2080641327 @default.
- W1978283669 doi "https://doi.org/10.1090/s0002-9947-1975-0397768-x" @default.
- W1978283669 hasPublicationYear "1975" @default.
- W1978283669 type Work @default.
- W1978283669 sameAs 1978283669 @default.
- W1978283669 citedByCount "12" @default.
- W1978283669 countsByYear W19782836692019 @default.
- W1978283669 countsByYear W19782836692020 @default.
- W1978283669 crossrefType "journal-article" @default.
- W1978283669 hasAuthorship W1978283669A5064751800 @default.
- W1978283669 hasBestOaLocation W19782836691 @default.
- W1978283669 hasConcept C114614502 @default.
- W1978283669 hasConcept C118615104 @default.
- W1978283669 hasConcept C129089157 @default.
- W1978283669 hasConcept C129866940 @default.
- W1978283669 hasConcept C132954091 @default.
- W1978283669 hasConcept C134306372 @default.
- W1978283669 hasConcept C143913944 @default.
- W1978283669 hasConcept C184720557 @default.
- W1978283669 hasConcept C191399826 @default.
- W1978283669 hasConcept C202444582 @default.
- W1978283669 hasConcept C21688789 @default.
- W1978283669 hasConcept C33923547 @default.
- W1978283669 hasConcept C34388435 @default.
- W1978283669 hasConcept C5961521 @default.
- W1978283669 hasConcept C70710897 @default.
- W1978283669 hasConcept C81332173 @default.
- W1978283669 hasConceptScore W1978283669C114614502 @default.
- W1978283669 hasConceptScore W1978283669C118615104 @default.
- W1978283669 hasConceptScore W1978283669C129089157 @default.
- W1978283669 hasConceptScore W1978283669C129866940 @default.
- W1978283669 hasConceptScore W1978283669C132954091 @default.
- W1978283669 hasConceptScore W1978283669C134306372 @default.
- W1978283669 hasConceptScore W1978283669C143913944 @default.
- W1978283669 hasConceptScore W1978283669C184720557 @default.
- W1978283669 hasConceptScore W1978283669C191399826 @default.
- W1978283669 hasConceptScore W1978283669C202444582 @default.
- W1978283669 hasConceptScore W1978283669C21688789 @default.
- W1978283669 hasConceptScore W1978283669C33923547 @default.
- W1978283669 hasConceptScore W1978283669C34388435 @default.
- W1978283669 hasConceptScore W1978283669C5961521 @default.
- W1978283669 hasConceptScore W1978283669C70710897 @default.
- W1978283669 hasConceptScore W1978283669C81332173 @default.
- W1978283669 hasLocation W19782836691 @default.
- W1978283669 hasOpenAccess W1978283669 @default.
- W1978283669 hasPrimaryLocation W19782836691 @default.
- W1978283669 hasRelatedWork W1585906134 @default.
- W1978283669 hasRelatedWork W1600132867 @default.
- W1978283669 hasRelatedWork W1811029628 @default.
- W1978283669 hasRelatedWork W1965115802 @default.
- W1978283669 hasRelatedWork W1984788263 @default.
- W1978283669 hasRelatedWork W1997292586 @default.
- W1978283669 hasRelatedWork W2019481061 @default.
- W1978283669 hasRelatedWork W2025339089 @default.
- W1978283669 hasRelatedWork W2031282681 @default.
- W1978283669 hasRelatedWork W2043984510 @default.
- W1978283669 hasRelatedWork W2065630733 @default.
- W1978283669 hasRelatedWork W2072190947 @default.
- W1978283669 hasRelatedWork W2109301041 @default.
- W1978283669 hasRelatedWork W2136058086 @default.
- W1978283669 hasRelatedWork W2163113580 @default.
- W1978283669 hasRelatedWork W2170263546 @default.
- W1978283669 hasRelatedWork W2477560881 @default.
- W1978283669 hasRelatedWork W2790152005 @default.
- W1978283669 hasRelatedWork W2969393242 @default.
- W1978283669 hasRelatedWork W2461066244 @default.
- W1978283669 isParatext "false" @default.
- W1978283669 isRetracted "false" @default.
- W1978283669 magId "1978283669" @default.
- W1978283669 workType "article" @default.