Matches in SemOpenAlex for { <https://semopenalex.org/work/W1978295003> ?p ?o ?g. }
- W1978295003 endingPage "199" @default.
- W1978295003 startingPage "188" @default.
- W1978295003 abstract "The chemical composition of persistent organic pollutants (POPs) in the environment is not uniform throughout the world, and these contaminants contain many structurally different lipophilic compounds. In a well-defined study cohort in the Slovak Republic, the POP chemicals present in the peripheral blood of exposed children were chemically analyzed. The chemical analysis data revealed that the relative concentration and profile of structurally different organic pollutants, including polychlorinated biphenyls (PCBs), 2,2′-bis(4-chlorophenyl)-1,1-dichloroethylene (p,p′-DDE), 2,2′-bis(4-chlorophenyl)-1,1,1-trichloro-ethane (p,p′-DDT), hexachlorobenzene (HCB) and β-hexachlorocyclohexane (β-HCH), may vary from individual to individual, even within the same exposure area. These chemicals can be broadly classified into two groups. The first group, the PCB congeners, primarily originated from industrial compounds and their byproducts. The second group of compounds originated from or was commonly used in the agricultural sector (e.g., DDT, HCB). The objective of this study was to examine the effects of the two POP exposure profiles on gene expression. For the study population, we selected pre-pubertal girls (mean age of 46.2 ± 1.4 months) with high POP concentrations in their blood (> 75% tile of total POP) and classified them in the high ‘PCB’ group when the total PCB concentration was significantly higher than the total concentration of other POP components and in the ‘Other Than PCB’ (OTP) group, when the total PCB concentration was significantly lower than the concentration of the other major POP constituents. A matched control group of girls (< 25% tile of total POP) was selected for comparison purpose (n = 5 per group). Our aims were to determine whether there were any common effects of high POP exposure at a toxicogenomic level and to investigate how exposure may affect physiological functions of the children in two different exposure scenarios. Global gene expression analysis using a microarray (Affymetrix Gene Chip Human genome U133 Plus 2.0 Array) platform was conducted on the total RNA of peripheral blood mononuclear cells from the girls. The results were analyzed by Partek GS, Louis, MI, which identified twelve genes (ATAD2B, BIVM, CD96, CXorf39, CYTH1 ETNK1, FAM13A, HIRA, INO80B, ODG1, RAD23B, and TSGA14) and two unidentified probe sets, as regulated differentially in both the PCB and OTP groups against the control group. The qRT-PCR method was used to validate the microarray results. The Ingenuity Pathway Analysis (IPA) software package identified the possible molecular impairments and disease risks associated with each gene set. Connective tissue disorders, genetic disorders, skeletal muscular disorders and neurological diseases were associated with the 12 common genes. The data therefore identified the potential molecular effects of POP exposure on a genomic level. This report underscores the importance of further study to validate the results in a random population and to evaluate the use of the identified genes as biomarkers for POP exposure." @default.
- W1978295003 created "2016-06-24" @default.
- W1978295003 creator A5023956040 @default.
- W1978295003 creator A5038987192 @default.
- W1978295003 creator A5056795123 @default.
- W1978295003 creator A5059656112 @default.
- W1978295003 creator A5068236661 @default.
- W1978295003 creator A5070954626 @default.
- W1978295003 creator A5073062370 @default.
- W1978295003 creator A5073905433 @default.
- W1978295003 creator A5088912798 @default.
- W1978295003 creator A5091463765 @default.
- W1978295003 creator A5091749351 @default.
- W1978295003 date "2012-02-01" @default.
- W1978295003 modified "2023-09-25" @default.
- W1978295003 title "Analysis of the toxicogenomic effects of exposure to persistent organic pollutants (POPs) in Slovakian girls: Correlations between gene expression and disease risk" @default.
- W1978295003 cites W1488971470 @default.
- W1978295003 cites W1517862272 @default.
- W1978295003 cites W1573746641 @default.
- W1978295003 cites W1887235320 @default.
- W1978295003 cites W1957958353 @default.
- W1978295003 cites W1967179667 @default.
- W1978295003 cites W1972416794 @default.
- W1978295003 cites W1974966069 @default.
- W1978295003 cites W1975955158 @default.
- W1978295003 cites W1976961822 @default.
- W1978295003 cites W1977913594 @default.
- W1978295003 cites W1978319925 @default.
- W1978295003 cites W1987134899 @default.
- W1978295003 cites W1989417859 @default.
- W1978295003 cites W1989480827 @default.
- W1978295003 cites W1990020589 @default.
- W1978295003 cites W1990674755 @default.
- W1978295003 cites W1991965467 @default.
- W1978295003 cites W1994349182 @default.
- W1978295003 cites W2001820004 @default.
- W1978295003 cites W2003239307 @default.
- W1978295003 cites W2005997880 @default.
- W1978295003 cites W2007367923 @default.
- W1978295003 cites W2009040345 @default.
- W1978295003 cites W2009716778 @default.
- W1978295003 cites W2010414106 @default.
- W1978295003 cites W2016659913 @default.
- W1978295003 cites W2018184839 @default.
- W1978295003 cites W2018553930 @default.
- W1978295003 cites W2023959788 @default.
- W1978295003 cites W2024485827 @default.
- W1978295003 cites W2028060696 @default.
- W1978295003 cites W2032084439 @default.
- W1978295003 cites W2032501728 @default.
- W1978295003 cites W2034531454 @default.
- W1978295003 cites W2034828958 @default.
- W1978295003 cites W2039057614 @default.
- W1978295003 cites W2039649808 @default.
- W1978295003 cites W2042185209 @default.
- W1978295003 cites W2046542973 @default.
- W1978295003 cites W2047708638 @default.
- W1978295003 cites W2048983409 @default.
- W1978295003 cites W2053471764 @default.
- W1978295003 cites W2054880048 @default.
- W1978295003 cites W2056766877 @default.
- W1978295003 cites W2060016532 @default.
- W1978295003 cites W2070053375 @default.
- W1978295003 cites W2073762297 @default.
- W1978295003 cites W2075391895 @default.
- W1978295003 cites W2079641984 @default.
- W1978295003 cites W2086464159 @default.
- W1978295003 cites W2102487178 @default.
- W1978295003 cites W2107277218 @default.
- W1978295003 cites W2121080336 @default.
- W1978295003 cites W2130555407 @default.
- W1978295003 cites W2133210805 @default.
- W1978295003 cites W2134774734 @default.
- W1978295003 cites W2134833839 @default.
- W1978295003 cites W2143869769 @default.
- W1978295003 cites W2146912985 @default.
- W1978295003 cites W2152103266 @default.
- W1978295003 cites W2161688594 @default.
- W1978295003 cites W2163849189 @default.
- W1978295003 cites W2166233032 @default.
- W1978295003 cites W2171547926 @default.
- W1978295003 cites W2314185483 @default.
- W1978295003 cites W4235025907 @default.
- W1978295003 doi "https://doi.org/10.1016/j.envint.2011.09.003" @default.
- W1978295003 hasPubMedCentralId "https://www.ncbi.nlm.nih.gov/pmc/articles/3259908" @default.
- W1978295003 hasPubMedId "https://pubmed.ncbi.nlm.nih.gov/22208759" @default.
- W1978295003 hasPublicationYear "2012" @default.
- W1978295003 type Work @default.
- W1978295003 sameAs 1978295003 @default.
- W1978295003 citedByCount "38" @default.
- W1978295003 countsByYear W19782950032012 @default.
- W1978295003 countsByYear W19782950032013 @default.
- W1978295003 countsByYear W19782950032014 @default.
- W1978295003 countsByYear W19782950032015 @default.
- W1978295003 countsByYear W19782950032016 @default.
- W1978295003 countsByYear W19782950032017 @default.
- W1978295003 countsByYear W19782950032018 @default.
- W1978295003 countsByYear W19782950032019 @default.