Matches in SemOpenAlex for { <https://semopenalex.org/work/W1978319265> ?p ?o ?g. }
- W1978319265 endingPage "1229" @default.
- W1978319265 startingPage "1222" @default.
- W1978319265 abstract "An $O(N)$ algorithm is proposed for calculating linear response functions of noninteracting electrons. This algorithm is simple and suitable to parallel and vector computation. Since it avoids ${O(N}^{3})$ computational effort of matrix diagonalization, it requires only $O(N)$ computational efforts, where $N$ is the dimension of the state vector. The use of this $O(N)$ algorithm is very effective since, otherwise, we have to calculate a large number of eigenstates, i.e., the occupied one-electron states up to the Fermi energy and the unoccupied states with higher energy. The advantage of this method compared to the Chebyshev polynomial method recently developed by Wang and Zunger [L. W. Wang, Phys. Rev. B 49, 10 154 (1994); L. W. Wang and A. Zunger, Phys. Rev. Lett. 73, 1039 (1994)] is that our method can calculate linear response functions without any storage of huge state vectors on external storage." @default.
- W1978319265 created "2016-06-24" @default.
- W1978319265 creator A5001665193 @default.
- W1978319265 creator A5002559979 @default.
- W1978319265 creator A5002580551 @default.
- W1978319265 creator A5011060827 @default.
- W1978319265 creator A5043486700 @default.
- W1978319265 creator A5082452145 @default.
- W1978319265 date "1997-07-01" @default.
- W1978319265 modified "2023-09-25" @default.
- W1978319265 title "Calculating the linear response functions of noninteracting electrons with a time-dependent Schrödinger equation" @default.
- W1978319265 cites W1626579222 @default.
- W1978319265 cites W1967711132 @default.
- W1978319265 cites W1975717363 @default.
- W1978319265 cites W1976823139 @default.
- W1978319265 cites W1976888537 @default.
- W1978319265 cites W1979517311 @default.
- W1978319265 cites W1979846593 @default.
- W1978319265 cites W1986219311 @default.
- W1978319265 cites W1997906157 @default.
- W1978319265 cites W2001839700 @default.
- W1978319265 cites W2002715746 @default.
- W1978319265 cites W2003520568 @default.
- W1978319265 cites W2003924096 @default.
- W1978319265 cites W2005315955 @default.
- W1978319265 cites W2005544710 @default.
- W1978319265 cites W2014800978 @default.
- W1978319265 cites W2015529637 @default.
- W1978319265 cites W2018249891 @default.
- W1978319265 cites W2018762095 @default.
- W1978319265 cites W2020891150 @default.
- W1978319265 cites W2021750723 @default.
- W1978319265 cites W2024211806 @default.
- W1978319265 cites W2025624180 @default.
- W1978319265 cites W2026077362 @default.
- W1978319265 cites W2027162983 @default.
- W1978319265 cites W2028090311 @default.
- W1978319265 cites W2032222091 @default.
- W1978319265 cites W2033336421 @default.
- W1978319265 cites W2039081246 @default.
- W1978319265 cites W2048197616 @default.
- W1978319265 cites W2050818153 @default.
- W1978319265 cites W2050897907 @default.
- W1978319265 cites W2051678988 @default.
- W1978319265 cites W2065742525 @default.
- W1978319265 cites W2067393684 @default.
- W1978319265 cites W2067992007 @default.
- W1978319265 cites W2068725607 @default.
- W1978319265 cites W2068811996 @default.
- W1978319265 cites W2069393880 @default.
- W1978319265 cites W2070099069 @default.
- W1978319265 cites W2075658275 @default.
- W1978319265 cites W2082382603 @default.
- W1978319265 cites W2094557820 @default.
- W1978319265 cites W2098432400 @default.
- W1978319265 cites W2116955132 @default.
- W1978319265 cites W2117366131 @default.
- W1978319265 cites W2117686912 @default.
- W1978319265 cites W2127190485 @default.
- W1978319265 cites W2136227089 @default.
- W1978319265 cites W2148509637 @default.
- W1978319265 cites W2951003453 @default.
- W1978319265 cites W4292414061 @default.
- W1978319265 cites W4308067218 @default.
- W1978319265 doi "https://doi.org/10.1103/physreve.56.1222" @default.
- W1978319265 hasPublicationYear "1997" @default.
- W1978319265 type Work @default.
- W1978319265 sameAs 1978319265 @default.
- W1978319265 citedByCount "67" @default.
- W1978319265 countsByYear W19783192652012 @default.
- W1978319265 countsByYear W19783192652013 @default.
- W1978319265 countsByYear W19783192652014 @default.
- W1978319265 countsByYear W19783192652015 @default.
- W1978319265 countsByYear W19783192652016 @default.
- W1978319265 countsByYear W19783192652017 @default.
- W1978319265 countsByYear W19783192652019 @default.
- W1978319265 countsByYear W19783192652020 @default.
- W1978319265 countsByYear W19783192652021 @default.
- W1978319265 countsByYear W19783192652022 @default.
- W1978319265 crossrefType "journal-article" @default.
- W1978319265 hasAuthorship W1978319265A5001665193 @default.
- W1978319265 hasAuthorship W1978319265A5002559979 @default.
- W1978319265 hasAuthorship W1978319265A5002580551 @default.
- W1978319265 hasAuthorship W1978319265A5011060827 @default.
- W1978319265 hasAuthorship W1978319265A5043486700 @default.
- W1978319265 hasAuthorship W1978319265A5082452145 @default.
- W1978319265 hasBestOaLocation W19783192652 @default.
- W1978319265 hasConcept C106487976 @default.
- W1978319265 hasConcept C111472728 @default.
- W1978319265 hasConcept C11413529 @default.
- W1978319265 hasConcept C114614502 @default.
- W1978319265 hasConcept C121332964 @default.
- W1978319265 hasConcept C129785596 @default.
- W1978319265 hasConcept C134306372 @default.
- W1978319265 hasConcept C138885662 @default.
- W1978319265 hasConcept C147120987 @default.
- W1978319265 hasConcept C158693339 @default.
- W1978319265 hasConcept C159985019 @default.