Matches in SemOpenAlex for { <https://semopenalex.org/work/W1978323897> ?p ?o ?g. }
Showing items 1 to 65 of
65
with 100 items per page.
- W1978323897 abstract "Abstract Fiber optic sensors are currently being deployed in novel completions throughout the world. The first completions being targeted are wells where specific problems associated with temperature need to be addressed. Fiber optics provide unique solutions in challenging environments in both existing fields and new frontiers such as deepwater. Fiber optics provide a high degree of reliability as no electronics are deployed downhole. Reliability issues are especially important in deepwater applications to reduce risk associated with high failure rates. Having an inherent tolerance for high temperature, fiber optics can provide distributed temperature data at one-meter intervals throughout the wellbore and the flow conduit. Due to their long data transmission length (12km), fiber optic systems have the potential to provide unique solutions to problems encountered in deepwater environments. This paper discusses the current state of fiber optic distributed temperature monitoring and shows how this technology can be employed in deepwater situations. Temperature measurements at one-meter intervals along the entire flow conduit allow operators to:Define inflow performance without well intervention, thus reducing operating expenseDetect and monitor the progression of water coningDetermine flowing temperature at various positions in the well to help avoid phase change problems such as paraffin or hydrate deposition. Through early detection of these and other problems, operators can make changes in production profiles or chemical injection programs to minimize the effects of the problem and increase overall wellbore performance. Case histories illustrate the results seen to date and exemplify unique completion techniques that take advantage of fiber optic technology. Introduction Fiber optic sensors are widely used throughout many industries and are now becoming established as a way to gather data in the petroleum industry. Considered a superior alternative to conventional electronic sensors in hightemperature pplications (>150°C), fiber optic sensors also have other advantages over electronic sensors, including:Higher sensitivityElectrical passivityHigh temperature tolerance (>350°C)Intrinsic safetyWide band widthImmunity to electromagnetic interferenceSingle point and distributed sensing capabilityMultiplexing capabilitiesExtremely small size. Among many measurands that currently can be accomplished with fiber optic sensors downhole are temperature, vibration, pressure, acoustics, flow, strain, pH and chemical species. Principles of Fiber Optic Downhole Temperature Sensing Fiber optics operate downhole in the following manner. A laser light pulse is sent down a multi-mode fiber optic waveguide. As this pulse travels along the waveguide, specific, temperature-induced molecular vibrations cause a very weak reflected signal to travel back up the fiber to the source. This weak signal is filtered out and measured by the surface opto-electronics system. The surface system compares the launch time of the light pulse to the time taken for the reflected light to get back to the source. The time differential determines the point of the temperature measurement, as the speed of light in the fiber is constant and known." @default.
- W1978323897 created "2016-06-24" @default.
- W1978323897 creator A5016474371 @default.
- W1978323897 creator A5018040126 @default.
- W1978323897 creator A5034228453 @default.
- W1978323897 creator A5071828943 @default.
- W1978323897 date "1999-05-03" @default.
- W1978323897 modified "2023-09-23" @default.
- W1978323897 title "Application of Optical Sensors in Deepwater Environments" @default.
- W1978323897 doi "https://doi.org/10.4043/10944-ms" @default.
- W1978323897 hasPublicationYear "1999" @default.
- W1978323897 type Work @default.
- W1978323897 sameAs 1978323897 @default.
- W1978323897 citedByCount "2" @default.
- W1978323897 countsByYear W19783238972021 @default.
- W1978323897 crossrefType "proceedings-article" @default.
- W1978323897 hasAuthorship W1978323897A5016474371 @default.
- W1978323897 hasAuthorship W1978323897A5018040126 @default.
- W1978323897 hasAuthorship W1978323897A5034228453 @default.
- W1978323897 hasAuthorship W1978323897A5071828943 @default.
- W1978323897 hasConcept C111368507 @default.
- W1978323897 hasConcept C121332964 @default.
- W1978323897 hasConcept C127313418 @default.
- W1978323897 hasConcept C163258240 @default.
- W1978323897 hasConcept C194232370 @default.
- W1978323897 hasConcept C21651689 @default.
- W1978323897 hasConcept C2776132308 @default.
- W1978323897 hasConcept C39432304 @default.
- W1978323897 hasConcept C41008148 @default.
- W1978323897 hasConcept C43214815 @default.
- W1978323897 hasConcept C62520636 @default.
- W1978323897 hasConcept C62649853 @default.
- W1978323897 hasConcept C76155785 @default.
- W1978323897 hasConcept C78762247 @default.
- W1978323897 hasConceptScore W1978323897C111368507 @default.
- W1978323897 hasConceptScore W1978323897C121332964 @default.
- W1978323897 hasConceptScore W1978323897C127313418 @default.
- W1978323897 hasConceptScore W1978323897C163258240 @default.
- W1978323897 hasConceptScore W1978323897C194232370 @default.
- W1978323897 hasConceptScore W1978323897C21651689 @default.
- W1978323897 hasConceptScore W1978323897C2776132308 @default.
- W1978323897 hasConceptScore W1978323897C39432304 @default.
- W1978323897 hasConceptScore W1978323897C41008148 @default.
- W1978323897 hasConceptScore W1978323897C43214815 @default.
- W1978323897 hasConceptScore W1978323897C62520636 @default.
- W1978323897 hasConceptScore W1978323897C62649853 @default.
- W1978323897 hasConceptScore W1978323897C76155785 @default.
- W1978323897 hasConceptScore W1978323897C78762247 @default.
- W1978323897 hasLocation W19783238971 @default.
- W1978323897 hasOpenAccess W1978323897 @default.
- W1978323897 hasPrimaryLocation W19783238971 @default.
- W1978323897 hasRelatedWork W2030208222 @default.
- W1978323897 hasRelatedWork W2059180882 @default.
- W1978323897 hasRelatedWork W2077642183 @default.
- W1978323897 hasRelatedWork W2125276403 @default.
- W1978323897 hasRelatedWork W2373448356 @default.
- W1978323897 hasRelatedWork W2383879905 @default.
- W1978323897 hasRelatedWork W2883184707 @default.
- W1978323897 hasRelatedWork W2899084033 @default.
- W1978323897 hasRelatedWork W3149517115 @default.
- W1978323897 hasRelatedWork W4229865607 @default.
- W1978323897 isParatext "false" @default.
- W1978323897 isRetracted "false" @default.
- W1978323897 magId "1978323897" @default.
- W1978323897 workType "article" @default.