Matches in SemOpenAlex for { <https://semopenalex.org/work/W1978330283> ?p ?o ?g. }
- W1978330283 endingPage "20485" @default.
- W1978330283 startingPage "20479" @default.
- W1978330283 abstract "The structure of phytohemagglutinin-L (PHA-L), a leucoagglutinating seed lectin from Phaseolus vulgaris, has been solved with molecular replacement using the coordinates of lentil lectin as model, and refined at a resolution of 2.8 Å. The final R-factor of the structure is 20.0%. The quaternary structure of the PHA-L tetramer differs from the structures of the concanavalin A and peanut lectin tetramers, but resembles the structure of the soybean agglutinin tetramer. PHA-L consists of two canonical legume lectin dimers that pack together through the formation of a close contact between two β-strands. Of the two covalently bound oligosaccharides per monomer, only one GlcNAc residue per monomer is visible in the electron density. In this article we describe the structure of PHA-L, and we discuss the putative position of the high affinity adenine-binding site present in a number of legume lectins. A comparison with transthyretin, a protein that shows a remarkable resemblance to PHA-L, gives further ground to our proposal. The structure of phytohemagglutinin-L (PHA-L), a leucoagglutinating seed lectin from Phaseolus vulgaris, has been solved with molecular replacement using the coordinates of lentil lectin as model, and refined at a resolution of 2.8 Å. The final R-factor of the structure is 20.0%. The quaternary structure of the PHA-L tetramer differs from the structures of the concanavalin A and peanut lectin tetramers, but resembles the structure of the soybean agglutinin tetramer. PHA-L consists of two canonical legume lectin dimers that pack together through the formation of a close contact between two β-strands. Of the two covalently bound oligosaccharides per monomer, only one GlcNAc residue per monomer is visible in the electron density. In this article we describe the structure of PHA-L, and we discuss the putative position of the high affinity adenine-binding site present in a number of legume lectins. A comparison with transthyretin, a protein that shows a remarkable resemblance to PHA-L, gives further ground to our proposal. INTRODUCTIONLectins are proteins that bind carbohydrates in a reversible and specific manner, and often have hemagglutinating properties. At present, the legume lectins undoubtedly form the most extensively studied group of lectins (Sharon and Lis, 1991). Over 70 different seed lectins have been identified in various Leguminosae species. The function of these lectins in vivo remains unsure, but defense against predation (Chrispeels and Raikhel, 11Chrispeels M.J. Raikhel N.V. Plant Cell. 1991; 3: 1-9Crossref PubMed Scopus (547) Google Scholar) and interaction with symbionts (Diaz et al., 15Diaz C. Melchers L.S. Hooykaas P.J.J. Lugtenberg B.J.J. Kijne J.W. Nature. 1989; 338: 579-581Crossref Scopus (255) Google Scholar) have been proposed. The x-ray structures of eight different legume lectins have been solved and refined: pea lectin (PSL, Einspahr et al. (17Einspahr H. Parks E.H. Suguna K. Subramanian E. Suddath F.L. J. Biol. Chem. 1986; 261: 16518-16527Abstract Full Text PDF PubMed Google Scholar)), lentil lectin (LCL, Loris et al. (28Loris R. Steyaert J. Maes D. Lisgarten J. Pickersgill R. Wyns L. Biochemistry. 1993; 32: 8772-8781Crossref PubMed Scopus (47) Google Scholar)), Lathyrus ochrus isolectins I and II (LOL I, Bourne et al. (5Bourne Y. Roussel A. Frey M. Rougé P. Fontecilla-Camps J-C. Cambillau C. Proteins. 1990; 7: 365-376Crossref Scopus (118) Google Scholar); LOL II, Bourne et al. (6Bourne Y. Mazurier J. Legrand D. Rougé P. Montreuil J. Spik G. Cambillau C. Structure. 1994; 2: 209-219Abstract Full Text Full Text PDF PubMed Scopus (94) Google Scholar)), Griffonia simplicifolia lectin IV (GS4, Delbaere et al. (14Delbaere L. Vandonselaar M. Prasad L. Quail W. Pearlstone J. Carpenter M. Smillie L. Nikrad P. Spohr U. Lemieux R. Can. J. Chem. 1990; 68: 1116-1121Crossref Scopus (80) Google Scholar)), Erythrina corallodendron lectin (EcorL, Shaanan et al. (43Shaanan B. Lis H. Sharon N. Science. 1991; 254: 862-866Crossref PubMed Scopus (264) Google Scholar)), concanavalin A (Con A, Becker et al. (2Becker J.W. Reeke Jr., G.N. Wang J.L. Cunningham B.A. Edelman G.M. J. Biol. Chem. 1975; 250: 1513-1524Abstract Full Text PDF PubMed Google Scholar)), peanut agglutinin (PNA, Banerjee et al. (1Banerjee R. Mande S.C. Ganesh V. Das K. Dhanaraj V. Mahanta S.K. Suguna K. Surolia A. Vijayan M. Proc. Natl. Acad. Sci. U. S. A. 1994; 91: 227-231Crossref PubMed Scopus (134) Google Scholar)) and, recently, soybean agglutinin (SBA, Dessen et al. (16Dessen A. Gupta D. Sabesan S. Brewer C.F. Sacchettini J.C. Biochemistry. 1995; 34: 4933-4942Crossref PubMed Scopus (151) Google Scholar)). The seeds of the common bean contain a protein fraction with sugar binding and hemagglutinating properties, called phytohemagglutinin (PHA). 1The abbreviations used are: PHA-Lphytohemagglutinin-LPHA-Ephytohemagglutinin-EPSLpea lectinLCLlentil lectinSBAsoybean agglutininPNApeanut agglutininGS4Griffonia symplicifolia isolectin 4ConAconcanavalin AEcorLErythrina corallodendron lectinLBLLima bean lectinDB58Dolichos biflorus stem and leaves lectinDBLDolichos biflorus seed lectinANS1,8-anilinonaphtalenesulfonic acidTNS2,6-toluidinylnaphtalenesulfonic acidr.m.s.root mean square. This fraction consists of five different tetramers, built out of two polypeptides (L and E) in all possible combinations (L4, L3E, L2E2, LE3, E4). The E-type and L-type subunits are, respectively, responsible for the erythroagglutinating and leucoagglutinating properties of the PHA fraction. The two polypeptides are both members of a family of four different polypeptides encoded by four tightly linked genes, generally referred to as the phytohemagglutinin family of bean proteins. This family, in addition to PHA-E and PHA-L, also contains arcelin (Romero Andreas et al., 42Romero Andreas J. Yandell B.S. Bliss F.A. Theor. Appl. Genet. 1986; 72: 123-128Crossref PubMed Scopus (54) Google Scholar; Hartweck et al., 23Hartweck L.M. Vogelzang R.D. Osborn T.C. Plant Physiol. 1991; 97: 204-211Crossref PubMed Scopus (34) Google Scholar; Goossens et al., 21Goossens A. Geremia R. Bauw G. Van Montagu M. Angenon G. Eur. J. Biochem. 1994; 225: 787-795Crossref PubMed Scopus (42) Google Scholar), which exists in at least six electrophoretic forms, and an α-amylase inhibitor (Moreno and Chrispeels, 33Moreno J. Chrispeels M.J. Proc. Natl. Acad. Sci. U. S. A. 1989; 86: 7885-7889Crossref PubMed Scopus (107) Google Scholar). Arcelin and α-amylase inhibitor can be considered as truncated forms of PHA, in which, respectively, one and two loops that play a sugar binding role are missing, abolishing the sugar binding properties. Both arcelin (Osborn et al., 37Osborn T.C. Alexander D.C. Sun S.S.M. Cardona C. Bliss F.A. Science. 1988; 240: 207-210Crossref PubMed Scopus (165) Google Scholar) and α-amylase inhibitor (Shade et al., 44Shade R.E. Schoeder H.E. Pueyo J.J. Tabe L.M. Murdock L.L. Higgins T.J.V. Chrispeels M.J. Bio/technology. 1994; 12: 793-796Crossref Scopus (271) Google Scholar) protect bean seed against predation by pests although the precise origin of the toxicity of arcelin is as yet unknown. In this paper we present the crystal structure of PHA-L, the L4 tetramer. PHA-L is a glycoprotein: each subunit is N-glycosylated at two different sites, with consensus sequence Asn-X-Ser/Thr. The subunit possesses a high-mannose type glycan attached at Asn-12, and a complex type glycan at Asn-60 (Sturm and Chrispeels, 46Sturm A. Chrispeels M.J. Plant Physiol. 1986; 80: 320-322Crossref Google Scholar). The minimal structural unit for high-affinity binding by PHA-L is the pentasaccharide Galβ1→4GlcNAcβ1→2[Galβ1-4GlcNAcβ1-6]Man, which is found in tetra- and tri-antennary complex type oligosaccharides of mammalian origin (Hammerström et al., 22Hammerström S. Hammerström M. Sundblad G. Arnarp J. Lönngren J. Proc. Natl. Acad. Sci. U. S. A. 1982; 79: 1611-1615Crossref PubMed Scopus (126) Google Scholar). In addition to the sugar binding properties of the legume lectins, a number of legume lectins also bind adenine and related ligands. High affinity binding sites for adenine and its derivatives have been found for PHA-E, Dolichos biflorus seed lectin (DBL), D. biflorus stem and leaves lectin (DB58), soybean agglutinin, and Phaseolus lunatus lectin (LBL) (Roberts and Goldstein, 39Roberts D.D. Goldstein I.J. J. Biol. Chem. 1982; 257: 11274-11277Abstract Full Text PDF PubMed Google Scholar; Roberts and Goldstein, 1983a40Roberts D.D. Goldstein I.J. J. Biol. Chem. 1983; 258 (a): 13820-13824Abstract Full Text PDF PubMed Google Scholar; Gegg et al., 20Gegg C.V. Roberts D.D. Segel I.H. Etzler M.E. Biochemistry. 1992; 31: 6938-6942Crossref PubMed Scopus (44) Google Scholar). In this article, we suggest the possible location of this site, based on photoaffinity labeling of the adenine site in PHA-E and LBL (Maliarik and Goldstein, 30Maliarik M.J. Goldstein I.J. J. Biol. Chem. 1988; 263: 11274-11279Abstract Full Text PDF PubMed Google Scholar) and the common quaternary structure of PHA-L and SBA. INTRODUCTIONLectins are proteins that bind carbohydrates in a reversible and specific manner, and often have hemagglutinating properties. At present, the legume lectins undoubtedly form the most extensively studied group of lectins (Sharon and Lis, 1991). Over 70 different seed lectins have been identified in various Leguminosae species. The function of these lectins in vivo remains unsure, but defense against predation (Chrispeels and Raikhel, 11Chrispeels M.J. Raikhel N.V. Plant Cell. 1991; 3: 1-9Crossref PubMed Scopus (547) Google Scholar) and interaction with symbionts (Diaz et al., 15Diaz C. Melchers L.S. Hooykaas P.J.J. Lugtenberg B.J.J. Kijne J.W. Nature. 1989; 338: 579-581Crossref Scopus (255) Google Scholar) have been proposed. The x-ray structures of eight different legume lectins have been solved and refined: pea lectin (PSL, Einspahr et al. (17Einspahr H. Parks E.H. Suguna K. Subramanian E. Suddath F.L. J. Biol. Chem. 1986; 261: 16518-16527Abstract Full Text PDF PubMed Google Scholar)), lentil lectin (LCL, Loris et al. (28Loris R. Steyaert J. Maes D. Lisgarten J. Pickersgill R. Wyns L. Biochemistry. 1993; 32: 8772-8781Crossref PubMed Scopus (47) Google Scholar)), Lathyrus ochrus isolectins I and II (LOL I, Bourne et al. (5Bourne Y. Roussel A. Frey M. Rougé P. Fontecilla-Camps J-C. Cambillau C. Proteins. 1990; 7: 365-376Crossref Scopus (118) Google Scholar); LOL II, Bourne et al. (6Bourne Y. Mazurier J. Legrand D. Rougé P. Montreuil J. Spik G. Cambillau C. Structure. 1994; 2: 209-219Abstract Full Text Full Text PDF PubMed Scopus (94) Google Scholar)), Griffonia simplicifolia lectin IV (GS4, Delbaere et al. (14Delbaere L. Vandonselaar M. Prasad L. Quail W. Pearlstone J. Carpenter M. Smillie L. Nikrad P. Spohr U. Lemieux R. Can. J. Chem. 1990; 68: 1116-1121Crossref Scopus (80) Google Scholar)), Erythrina corallodendron lectin (EcorL, Shaanan et al. (43Shaanan B. Lis H. Sharon N. Science. 1991; 254: 862-866Crossref PubMed Scopus (264) Google Scholar)), concanavalin A (Con A, Becker et al. (2Becker J.W. Reeke Jr., G.N. Wang J.L. Cunningham B.A. Edelman G.M. J. Biol. Chem. 1975; 250: 1513-1524Abstract Full Text PDF PubMed Google Scholar)), peanut agglutinin (PNA, Banerjee et al. (1Banerjee R. Mande S.C. Ganesh V. Das K. Dhanaraj V. Mahanta S.K. Suguna K. Surolia A. Vijayan M. Proc. Natl. Acad. Sci. U. S. A. 1994; 91: 227-231Crossref PubMed Scopus (134) Google Scholar)) and, recently, soybean agglutinin (SBA, Dessen et al. (16Dessen A. Gupta D. Sabesan S. Brewer C.F. Sacchettini J.C. Biochemistry. 1995; 34: 4933-4942Crossref PubMed Scopus (151) Google Scholar)). The seeds of the common bean contain a protein fraction with sugar binding and hemagglutinating properties, called phytohemagglutinin (PHA). 1The abbreviations used are: PHA-Lphytohemagglutinin-LPHA-Ephytohemagglutinin-EPSLpea lectinLCLlentil lectinSBAsoybean agglutininPNApeanut agglutininGS4Griffonia symplicifolia isolectin 4ConAconcanavalin AEcorLErythrina corallodendron lectinLBLLima bean lectinDB58Dolichos biflorus stem and leaves lectinDBLDolichos biflorus seed lectinANS1,8-anilinonaphtalenesulfonic acidTNS2,6-toluidinylnaphtalenesulfonic acidr.m.s.root mean square. This fraction consists of five different tetramers, built out of two polypeptides (L and E) in all possible combinations (L4, L3E, L2E2, LE3, E4). The E-type and L-type subunits are, respectively, responsible for the erythroagglutinating and leucoagglutinating properties of the PHA fraction. The two polypeptides are both members of a family of four different polypeptides encoded by four tightly linked genes, generally referred to as the phytohemagglutinin family of bean proteins. This family, in addition to PHA-E and PHA-L, also contains arcelin (Romero Andreas et al., 42Romero Andreas J. Yandell B.S. Bliss F.A. Theor. Appl. Genet. 1986; 72: 123-128Crossref PubMed Scopus (54) Google Scholar; Hartweck et al., 23Hartweck L.M. Vogelzang R.D. Osborn T.C. Plant Physiol. 1991; 97: 204-211Crossref PubMed Scopus (34) Google Scholar; Goossens et al., 21Goossens A. Geremia R. Bauw G. Van Montagu M. Angenon G. Eur. J. Biochem. 1994; 225: 787-795Crossref PubMed Scopus (42) Google Scholar), which exists in at least six electrophoretic forms, and an α-amylase inhibitor (Moreno and Chrispeels, 33Moreno J. Chrispeels M.J. Proc. Natl. Acad. Sci. U. S. A. 1989; 86: 7885-7889Crossref PubMed Scopus (107) Google Scholar). Arcelin and α-amylase inhibitor can be considered as truncated forms of PHA, in which, respectively, one and two loops that play a sugar binding role are missing, abolishing the sugar binding properties. Both arcelin (Osborn et al., 37Osborn T.C. Alexander D.C. Sun S.S.M. Cardona C. Bliss F.A. Science. 1988; 240: 207-210Crossref PubMed Scopus (165) Google Scholar) and α-amylase inhibitor (Shade et al., 44Shade R.E. Schoeder H.E. Pueyo J.J. Tabe L.M. Murdock L.L. Higgins T.J.V. Chrispeels M.J. Bio/technology. 1994; 12: 793-796Crossref Scopus (271) Google Scholar) protect bean seed against predation by pests although the precise origin of the toxicity of arcelin is as yet unknown. In this paper we present the crystal structure of PHA-L, the L4 tetramer. PHA-L is a glycoprotein: each subunit is N-glycosylated at two different sites, with consensus sequence Asn-X-Ser/Thr. The subunit possesses a high-mannose type glycan attached at Asn-12, and a complex type glycan at Asn-60 (Sturm and Chrispeels, 46Sturm A. Chrispeels M.J. Plant Physiol. 1986; 80: 320-322Crossref Google Scholar). The minimal structural unit for high-affinity binding by PHA-L is the pentasaccharide Galβ1→4GlcNAcβ1→2[Galβ1-4GlcNAcβ1-6]Man, which is found in tetra- and tri-antennary complex type oligosaccharides of mammalian origin (Hammerström et al., 22Hammerström S. Hammerström M. Sundblad G. Arnarp J. Lönngren J. Proc. Natl. Acad. Sci. U. S. A. 1982; 79: 1611-1615Crossref PubMed Scopus (126) Google Scholar). In addition to the sugar binding properties of the legume lectins, a number of legume lectins also bind adenine and related ligands. High affinity binding sites for adenine and its derivatives have been found for PHA-E, Dolichos biflorus seed lectin (DBL), D. biflorus stem and leaves lectin (DB58), soybean agglutinin, and Phaseolus lunatus lectin (LBL) (Roberts and Goldstein, 39Roberts D.D. Goldstein I.J. J. Biol. Chem. 1982; 257: 11274-11277Abstract Full Text PDF PubMed Google Scholar; Roberts and Goldstein, 1983a40Roberts D.D. Goldstein I.J. J. Biol. Chem. 1983; 258 (a): 13820-13824Abstract Full Text PDF PubMed Google Scholar; Gegg et al., 20Gegg C.V. Roberts D.D. Segel I.H. Etzler M.E. Biochemistry. 1992; 31: 6938-6942Crossref PubMed Scopus (44) Google Scholar). In this article, we suggest the possible location of this site, based on photoaffinity labeling of the adenine site in PHA-E and LBL (Maliarik and Goldstein, 30Maliarik M.J. Goldstein I.J. J. Biol. Chem. 1988; 263: 11274-11279Abstract Full Text PDF PubMed Google Scholar) and the common quaternary structure of PHA-L and SBA." @default.
- W1978330283 created "2016-06-24" @default.
- W1978330283 creator A5005761247 @default.
- W1978330283 creator A5030764179 @default.
- W1978330283 creator A5031519919 @default.
- W1978330283 creator A5042854852 @default.
- W1978330283 creator A5047821550 @default.
- W1978330283 creator A5079587800 @default.
- W1978330283 date "1996-08-01" @default.
- W1978330283 modified "2023-10-18" @default.
- W1978330283 title "The Crystallographic Structure of Phytohemagglutinin-L" @default.
- W1978330283 cites W1483264458 @default.
- W1978330283 cites W1511644631 @default.
- W1978330283 cites W1516871591 @default.
- W1978330283 cites W1531852203 @default.
- W1978330283 cites W1799752396 @default.
- W1978330283 cites W1821925018 @default.
- W1978330283 cites W1967144890 @default.
- W1978330283 cites W1968931509 @default.
- W1978330283 cites W1972149369 @default.
- W1978330283 cites W1972301670 @default.
- W1978330283 cites W1973067442 @default.
- W1978330283 cites W1986191025 @default.
- W1978330283 cites W1995730607 @default.
- W1978330283 cites W1997930354 @default.
- W1978330283 cites W1999137197 @default.
- W1978330283 cites W2017619931 @default.
- W1978330283 cites W2020096423 @default.
- W1978330283 cites W2028231353 @default.
- W1978330283 cites W2031128739 @default.
- W1978330283 cites W2035646744 @default.
- W1978330283 cites W2039504130 @default.
- W1978330283 cites W2049953217 @default.
- W1978330283 cites W2050266258 @default.
- W1978330283 cites W2054443723 @default.
- W1978330283 cites W2059630086 @default.
- W1978330283 cites W2060633236 @default.
- W1978330283 cites W2068371851 @default.
- W1978330283 cites W2073633791 @default.
- W1978330283 cites W2080476827 @default.
- W1978330283 cites W2081453751 @default.
- W1978330283 cites W2088621354 @default.
- W1978330283 cites W2097697129 @default.
- W1978330283 cites W2106315897 @default.
- W1978330283 cites W2122586816 @default.
- W1978330283 cites W2123970552 @default.
- W1978330283 cites W2165552942 @default.
- W1978330283 cites W2165892124 @default.
- W1978330283 cites W2314119501 @default.
- W1978330283 cites W2399042226 @default.
- W1978330283 cites W4236122427 @default.
- W1978330283 cites W65560089 @default.
- W1978330283 doi "https://doi.org/10.1074/jbc.271.34.20479" @default.
- W1978330283 hasPubMedId "https://pubmed.ncbi.nlm.nih.gov/8702788" @default.
- W1978330283 hasPublicationYear "1996" @default.
- W1978330283 type Work @default.
- W1978330283 sameAs 1978330283 @default.
- W1978330283 citedByCount "111" @default.
- W1978330283 countsByYear W19783302832012 @default.
- W1978330283 countsByYear W19783302832013 @default.
- W1978330283 countsByYear W19783302832014 @default.
- W1978330283 countsByYear W19783302832015 @default.
- W1978330283 countsByYear W19783302832016 @default.
- W1978330283 countsByYear W19783302832017 @default.
- W1978330283 countsByYear W19783302832018 @default.
- W1978330283 countsByYear W19783302832019 @default.
- W1978330283 countsByYear W19783302832020 @default.
- W1978330283 countsByYear W19783302832021 @default.
- W1978330283 countsByYear W19783302832022 @default.
- W1978330283 crossrefType "journal-article" @default.
- W1978330283 hasAuthorship W1978330283A5005761247 @default.
- W1978330283 hasAuthorship W1978330283A5030764179 @default.
- W1978330283 hasAuthorship W1978330283A5031519919 @default.
- W1978330283 hasAuthorship W1978330283A5042854852 @default.
- W1978330283 hasAuthorship W1978330283A5047821550 @default.
- W1978330283 hasAuthorship W1978330283A5079587800 @default.
- W1978330283 hasBestOaLocation W19783302831 @default.
- W1978330283 hasConcept C185592680 @default.
- W1978330283 hasConcept C8010536 @default.
- W1978330283 hasConceptScore W1978330283C185592680 @default.
- W1978330283 hasConceptScore W1978330283C8010536 @default.
- W1978330283 hasIssue "34" @default.
- W1978330283 hasLocation W19783302831 @default.
- W1978330283 hasOpenAccess W1978330283 @default.
- W1978330283 hasPrimaryLocation W19783302831 @default.
- W1978330283 hasRelatedWork W1531601525 @default.
- W1978330283 hasRelatedWork W1990781990 @default.
- W1978330283 hasRelatedWork W2319480705 @default.
- W1978330283 hasRelatedWork W2384464875 @default.
- W1978330283 hasRelatedWork W2606230654 @default.
- W1978330283 hasRelatedWork W2607424097 @default.
- W1978330283 hasRelatedWork W2748952813 @default.
- W1978330283 hasRelatedWork W2899084033 @default.
- W1978330283 hasRelatedWork W2948807893 @default.
- W1978330283 hasRelatedWork W2778153218 @default.
- W1978330283 hasVolume "271" @default.
- W1978330283 isParatext "false" @default.
- W1978330283 isRetracted "false" @default.