Matches in SemOpenAlex for { <https://semopenalex.org/work/W1978332561> ?p ?o ?g. }
- W1978332561 endingPage "14722" @default.
- W1978332561 startingPage "14712" @default.
- W1978332561 abstract "We present the results of neutron-scattering studies on various aspects of crystalline and magnetic structure in single crystals of ${mathrm{La}}_{1.6ensuremath{-}x}{mathrm{Nd}}_{0.4}{mathrm{Sr}}_{x}{mathrm{CuO}}_{4}$ with $x=0.12$ and 0.15. In particular, we have reexamined the degree of stripe order in an $x=0.12$ sample. Measurements of the width for an elastic magnetic peak show that it saturates at a finite value below 30 K, corresponding to a spin-spin correlation length of $200mathrm{AA{}}mathrm{}.$ A model calculation indicates that the differing widths of magnetic and (previously reported) charge-order peaks, together with the lack of commensurability, can be consistently explained by disorder in the stripe spacing. Above 30 K (i.e., above the point at which a recent muon spin-rotation study has found a loss of static magnetic order), the width of the nominally elastic signal begins to increase. Interpreting the signal as critical scattering from slowly fluctuating spins, the temperature dependence of the width is consistent with renormalized classical behavior of a two-dimensional anisotropic Heisenberg antiferromagnet. Inelastic scattering measurements show that incommensurate spin excitations survive at and above 50 K, where the elastic signal is negligible. Given that the stripe order is believed to be pinned by the low-temperature tetragonal (LTT) crystal structure, we have also investigated the transition near 70 K from the low-temperature orthorhombic (LTO) structure. We show that our $x=0.12$ crystal passes through an intervening less-orthorhombic phase, before reaching the LTT at $ensuremath{sim}40mathrm{K},$ whereas the $x=0.15$ crystal goes directly from LTO to LTT, with coexistence of the two phases over a range of $ensuremath{sim}7mathrm{K}.$ Sharp Bragg peaks in the LTT phase of the $x=0.15$ crystal indicate a domain size of $ensuremath{gtrsim}1000mathrm{AA{}}mathrm{},$ with no obvious evidence for LTO domains; hence, the coexistence of stripe order and superconductivity in this sample cannot be explained by a mixture of crystalline phases. Finally, we present scattering evidence for small LTT-like domains in the LTO phase of the $x=0.15$ sample. A correlation between the volume fraction of such domains and deviations of in-plane resistivity from linear T dependence suggest that charge stripes interact with these domains within the LTO matrix." @default.
- W1978332561 created "2016-06-24" @default.
- W1978332561 creator A5009833030 @default.
- W1978332561 creator A5046931444 @default.
- W1978332561 creator A5070413104 @default.
- W1978332561 date "1999-06-01" @default.
- W1978332561 modified "2023-10-02" @default.
- W1978332561 title "Glassy nature of stripe ordering in<mml:math xmlns:mml=http://www.w3.org/1998/Math/MathML display=inline><mml:mrow><mml:msub><mml:mrow><mml:mi mathvariant=normal>La</mml:mi></mml:mrow><mml:mrow><mml:mn>1.6</mml:mn><mml:mi>−</mml:mi><mml:mi>x</mml:mi></mml:mrow></mml:msub></mml:mrow><mml:mrow><mml:msub><mml:mrow><mml:mi mathvariant=normal>Nd</mml:mi></mml:mrow><mml:mrow><mml:mn>0.4</mml:mn></mml:mrow></mml:msub></mml:mrow><mml:mrow><mml:msub><mml:mrow><mml:mi mathvariant=normal>Sr</mml…" @default.
- W1978332561 cites W1489612589 @default.
- W1978332561 cites W1507413791 @default.
- W1978332561 cites W152538091 @default.
- W1978332561 cites W1554540069 @default.
- W1978332561 cites W1609226232 @default.
- W1978332561 cites W1614146456 @default.
- W1978332561 cites W1615167957 @default.
- W1978332561 cites W1615848039 @default.
- W1978332561 cites W1625319197 @default.
- W1978332561 cites W1629048700 @default.
- W1978332561 cites W1648010037 @default.
- W1978332561 cites W1658557489 @default.
- W1978332561 cites W1660690118 @default.
- W1978332561 cites W1667110816 @default.
- W1978332561 cites W193819276 @default.
- W1978332561 cites W1964530097 @default.
- W1978332561 cites W1966711070 @default.
- W1978332561 cites W1967663024 @default.
- W1978332561 cites W1968660703 @default.
- W1978332561 cites W197503850 @default.
- W1978332561 cites W1989804153 @default.
- W1978332561 cites W1991892602 @default.
- W1978332561 cites W1992320308 @default.
- W1978332561 cites W1993735067 @default.
- W1978332561 cites W1993743983 @default.
- W1978332561 cites W2000250202 @default.
- W1978332561 cites W2006232082 @default.
- W1978332561 cites W2020686388 @default.
- W1978332561 cites W2025903736 @default.
- W1978332561 cites W2027210238 @default.
- W1978332561 cites W2027501717 @default.
- W1978332561 cites W2031002017 @default.
- W1978332561 cites W2032545482 @default.
- W1978332561 cites W2033418663 @default.
- W1978332561 cites W2036350055 @default.
- W1978332561 cites W2040121293 @default.
- W1978332561 cites W2051391183 @default.
- W1978332561 cites W2065366879 @default.
- W1978332561 cites W2071103778 @default.
- W1978332561 cites W2071996556 @default.
- W1978332561 cites W2072954196 @default.
- W1978332561 cites W2073574320 @default.
- W1978332561 cites W2080162238 @default.
- W1978332561 cites W2081444402 @default.
- W1978332561 cites W2088309569 @default.
- W1978332561 cites W2091286255 @default.
- W1978332561 cites W2092147893 @default.
- W1978332561 cites W2092425537 @default.
- W1978332561 cites W291443582 @default.
- W1978332561 cites W2980976498 @default.
- W1978332561 cites W2992726982 @default.
- W1978332561 cites W3100542873 @default.
- W1978332561 cites W31996104 @default.
- W1978332561 cites W4595624 @default.
- W1978332561 cites W53315642 @default.
- W1978332561 doi "https://doi.org/10.1103/physrevb.59.14712" @default.
- W1978332561 hasPublicationYear "1999" @default.
- W1978332561 type Work @default.
- W1978332561 sameAs 1978332561 @default.
- W1978332561 citedByCount "139" @default.
- W1978332561 countsByYear W19783325612012 @default.
- W1978332561 countsByYear W19783325612014 @default.
- W1978332561 countsByYear W19783325612015 @default.
- W1978332561 countsByYear W19783325612016 @default.
- W1978332561 countsByYear W19783325612017 @default.
- W1978332561 countsByYear W19783325612018 @default.
- W1978332561 countsByYear W19783325612019 @default.
- W1978332561 countsByYear W19783325612020 @default.
- W1978332561 countsByYear W19783325612021 @default.
- W1978332561 countsByYear W19783325612022 @default.
- W1978332561 countsByYear W19783325612023 @default.
- W1978332561 crossrefType "journal-article" @default.
- W1978332561 hasAuthorship W1978332561A5009833030 @default.
- W1978332561 hasAuthorship W1978332561A5046931444 @default.
- W1978332561 hasAuthorship W1978332561A5070413104 @default.
- W1978332561 hasBestOaLocation W19783325612 @default.
- W1978332561 hasConcept C10138342 @default.
- W1978332561 hasConcept C120665830 @default.
- W1978332561 hasConcept C121332964 @default.
- W1978332561 hasConcept C155355069 @default.
- W1978332561 hasConcept C162324750 @default.
- W1978332561 hasConcept C170751736 @default.
- W1978332561 hasConcept C182306322 @default.
- W1978332561 hasConcept C191486275 @default.
- W1978332561 hasConcept C207114421 @default.
- W1978332561 hasConcept C26873012 @default.
- W1978332561 hasConcept C37243968 @default.
- W1978332561 hasConcept C44280652 @default.
- W1978332561 hasConcept C62520636 @default.
- W1978332561 hasConceptScore W1978332561C10138342 @default.