Matches in SemOpenAlex for { <https://semopenalex.org/work/W1978391752> ?p ?o ?g. }
- W1978391752 endingPage "5628" @default.
- W1978391752 startingPage "5615" @default.
- W1978391752 abstract "Abstract. Amorphous (semi-)solid organic aerosol particles have the potential to serve as surfaces for heterogeneous ice nucleation in cirrus clouds. Raman spectroscopy and optical microscopy have been used in conjunction with a cold stage to examine water uptake and ice nucleation on individual amorphous (semi-)solid particles at atmospherically relevant temperatures (200–273 K). Three organic compounds considered proxies for atmospheric secondary organic aerosol (SOA) were used in this investigation: sucrose, citric acid and glucose. Internally mixed particles consisting of each organic and ammonium sulfate were also investigated. Results from water uptake experiments followed the shape of a humidity-induced glass transition (Tg(RH)) curve and were used to construct state diagrams for each organic and corresponding mixture. Experimentally derived Tg(RH) curves are in good agreement with theoretical predictions of Tg(RH) following the approach of Koop et al. (2011). A unique humidity-induced glass transition point on each state diagram, Tg'(RH), was used to quantify and compare results from this study to previous works. Values of Tg'(RH) determined for sucrose, glucose and citric acid glasses were 236, 230 and 220 K, respectively. Values of Tg'(RH) for internally mixed organic/sulfate particles were always significantly lower; 210, 207 and 215 K for sucrose/sulfate, glucose/sulfate and citric acid/sulfate, respectively. All investigated SOA proxies were observed to act as heterogeneous ice nuclei at tropospheric temperatures. Heterogeneous ice nucleation on pure organic particles occurred at Sice = 1.1–1.4 for temperatures below 235 K. Particles consisting of 1:1 organic-sulfate mixtures took up water over a greater range of conditions but were in some cases also observed to heterogeneously nucleate ice at temperatures below 202 K (Sice= 1.25–1.38). Polynomial curves were fitted to experimental water uptake data and then incorporated into the Community Aerosol Radiation Model for Atmospheres (CARMA) along with the predicted range of humidity-induced glass transition temperatures for atmospheric SOA from Koop et al. (2011). Model results suggest that organic and organic/sulfate aerosol could be glassy more than 60% of the time in the midlatitude upper troposphere and more than 40% of the time in the tropical tropopause region (TTL). At conditions favorable for ice formation (Sice > 1), particles in the TTL are expected to be glassy more than 50% of the time for temperatures below 200 K. Results from this study suggests that amorphous (semi-)solid organic particles are often present in the upper troposphere and that heterogeneous ice formation on this type of particle may play an important role in cirrus cloud formation." @default.
- W1978391752 created "2016-06-24" @default.
- W1978391752 creator A5021994955 @default.
- W1978391752 creator A5033072149 @default.
- W1978391752 creator A5043150952 @default.
- W1978391752 creator A5047501836 @default.
- W1978391752 creator A5065613655 @default.
- W1978391752 creator A5086568164 @default.
- W1978391752 date "2013-06-07" @default.
- W1978391752 modified "2023-10-01" @default.
- W1978391752 title "State transformations and ice nucleation in amorphous (semi-)solid organic aerosol" @default.
- W1978391752 cites W1483306217 @default.
- W1978391752 cites W1561878391 @default.
- W1978391752 cites W1587101236 @default.
- W1978391752 cites W1988233385 @default.
- W1978391752 cites W2001219782 @default.
- W1978391752 cites W2030102203 @default.
- W1978391752 cites W2034390920 @default.
- W1978391752 cites W2035215452 @default.
- W1978391752 cites W2036504633 @default.
- W1978391752 cites W2047926788 @default.
- W1978391752 cites W2048421180 @default.
- W1978391752 cites W2049905428 @default.
- W1978391752 cites W2066521562 @default.
- W1978391752 cites W2071015253 @default.
- W1978391752 cites W2078331915 @default.
- W1978391752 cites W2078555613 @default.
- W1978391752 cites W2080955504 @default.
- W1978391752 cites W2087475620 @default.
- W1978391752 cites W2088509007 @default.
- W1978391752 cites W2096286248 @default.
- W1978391752 cites W2097531853 @default.
- W1978391752 cites W2103516396 @default.
- W1978391752 cites W2112709927 @default.
- W1978391752 cites W2112923815 @default.
- W1978391752 cites W2114479908 @default.
- W1978391752 cites W2114656203 @default.
- W1978391752 cites W2115754251 @default.
- W1978391752 cites W2120371463 @default.
- W1978391752 cites W2122004295 @default.
- W1978391752 cites W2124138535 @default.
- W1978391752 cites W2130462439 @default.
- W1978391752 cites W2136351893 @default.
- W1978391752 cites W2140990176 @default.
- W1978391752 cites W2146335894 @default.
- W1978391752 cites W2153877708 @default.
- W1978391752 cites W2160853425 @default.
- W1978391752 cites W2161411175 @default.
- W1978391752 cites W2167302998 @default.
- W1978391752 cites W2172977821 @default.
- W1978391752 cites W2315009775 @default.
- W1978391752 doi "https://doi.org/10.5194/acp-13-5615-2013" @default.
- W1978391752 hasPublicationYear "2013" @default.
- W1978391752 type Work @default.
- W1978391752 sameAs 1978391752 @default.
- W1978391752 citedByCount "77" @default.
- W1978391752 countsByYear W19783917522013 @default.
- W1978391752 countsByYear W19783917522014 @default.
- W1978391752 countsByYear W19783917522015 @default.
- W1978391752 countsByYear W19783917522016 @default.
- W1978391752 countsByYear W19783917522017 @default.
- W1978391752 countsByYear W19783917522018 @default.
- W1978391752 countsByYear W19783917522019 @default.
- W1978391752 countsByYear W19783917522020 @default.
- W1978391752 countsByYear W19783917522021 @default.
- W1978391752 countsByYear W19783917522022 @default.
- W1978391752 countsByYear W19783917522023 @default.
- W1978391752 crossrefType "journal-article" @default.
- W1978391752 hasAuthorship W1978391752A5021994955 @default.
- W1978391752 hasAuthorship W1978391752A5033072149 @default.
- W1978391752 hasAuthorship W1978391752A5043150952 @default.
- W1978391752 hasAuthorship W1978391752A5047501836 @default.
- W1978391752 hasAuthorship W1978391752A5065613655 @default.
- W1978391752 hasAuthorship W1978391752A5086568164 @default.
- W1978391752 hasBestOaLocation W19783917521 @default.
- W1978391752 hasConcept C105923489 @default.
- W1978391752 hasConcept C107872376 @default.
- W1978391752 hasConcept C113196181 @default.
- W1978391752 hasConcept C121332964 @default.
- W1978391752 hasConcept C122409099 @default.
- W1978391752 hasConcept C122865956 @default.
- W1978391752 hasConcept C127313418 @default.
- W1978391752 hasConcept C147789679 @default.
- W1978391752 hasConcept C153294291 @default.
- W1978391752 hasConcept C158960510 @default.
- W1978391752 hasConcept C178790620 @default.
- W1978391752 hasConcept C185592680 @default.
- W1978391752 hasConcept C199289684 @default.
- W1978391752 hasConcept C2776704483 @default.
- W1978391752 hasConcept C2778343803 @default.
- W1978391752 hasConcept C2779032678 @default.
- W1978391752 hasConcept C2779345167 @default.
- W1978391752 hasConcept C2780925461 @default.
- W1978391752 hasConcept C2781041046 @default.
- W1978391752 hasConcept C2781448682 @default.
- W1978391752 hasConcept C43617362 @default.
- W1978391752 hasConcept C521977710 @default.
- W1978391752 hasConcept C56052488 @default.