Matches in SemOpenAlex for { <https://semopenalex.org/work/W1978429424> ?p ?o ?g. }
- W1978429424 endingPage "195" @default.
- W1978429424 startingPage "166" @default.
- W1978429424 abstract "This paper explores the promise of simple adaptive networks as models of human learning. The least-mean-squares (LMS) learning rule of networks corresponds to the Rescorla-Wagner model of Pavlovian conditioning, suggesting interesting parallels in human and animal learning. We review three experiments in which subjects learned to classify patients according to symptoms which had differing correlations with two diseases. The LMS network model predicted the results of these experiments, comparing somewhat favorably with several competing learning models. We then extended the network model to deal with some attentional effects in human discrimination learning, wherein cue weight reflects attention to a cue. We further extended the model to include conjunctive features, enabling it to approximate classic results of the difficulty ordering of learning differing types of classifications. Despite the well-known limitations of one-layer network models, we nevertheless promote their use as benchmark models because of their explanatory power, simplicity, aesthetic grace, and approximation, in many circumstances, to multilayer network models. The successes of a simple model suggest greater accuracy of the LMS algorithm as against other learning rules, while its failures inform and constrain the class of more complex models needed to explain complex results." @default.
- W1978429424 created "2016-06-24" @default.
- W1978429424 creator A5018751528 @default.
- W1978429424 creator A5073735097 @default.
- W1978429424 date "1988-04-01" @default.
- W1978429424 modified "2023-10-16" @default.
- W1978429424 title "Evaluating an adaptive network model of human learning" @default.
- W1978429424 cites W1969607470 @default.
- W1978429424 cites W1971831862 @default.
- W1978429424 cites W1975416385 @default.
- W1978429424 cites W1979749091 @default.
- W1978429424 cites W1980054641 @default.
- W1978429424 cites W1986264597 @default.
- W1978429424 cites W1988317303 @default.
- W1978429424 cites W1995341919 @default.
- W1978429424 cites W1996334976 @default.
- W1978429424 cites W2001965880 @default.
- W1978429424 cites W2003175365 @default.
- W1978429424 cites W2012744959 @default.
- W1978429424 cites W2021612297 @default.
- W1978429424 cites W2024195378 @default.
- W1978429424 cites W2033442452 @default.
- W1978429424 cites W2037206765 @default.
- W1978429424 cites W2040598998 @default.
- W1978429424 cites W2044737013 @default.
- W1978429424 cites W2046385970 @default.
- W1978429424 cites W2049202116 @default.
- W1978429424 cites W2054716799 @default.
- W1978429424 cites W2057896339 @default.
- W1978429424 cites W2059975159 @default.
- W1978429424 cites W2063575834 @default.
- W1978429424 cites W2067242602 @default.
- W1978429424 cites W2073257493 @default.
- W1978429424 cites W2077829970 @default.
- W1978429424 cites W2078492619 @default.
- W1978429424 cites W2079199322 @default.
- W1978429424 cites W2080546374 @default.
- W1978429424 cites W2082385556 @default.
- W1978429424 cites W2082671186 @default.
- W1978429424 cites W2083217812 @default.
- W1978429424 cites W2086335849 @default.
- W1978429424 cites W2086618114 @default.
- W1978429424 cites W2090144013 @default.
- W1978429424 cites W2091748005 @default.
- W1978429424 cites W2092291497 @default.
- W1978429424 cites W2124768238 @default.
- W1978429424 cites W2128353709 @default.
- W1978429424 cites W2141545068 @default.
- W1978429424 cites W2142131598 @default.
- W1978429424 cites W2148449262 @default.
- W1978429424 cites W2159746264 @default.
- W1978429424 cites W2168356776 @default.
- W1978429424 cites W2571532437 @default.
- W1978429424 cites W4234497863 @default.
- W1978429424 cites W4239489095 @default.
- W1978429424 cites W4242558598 @default.
- W1978429424 cites W4246657221 @default.
- W1978429424 cites W4255662657 @default.
- W1978429424 cites W2063104949 @default.
- W1978429424 cites W2094790441 @default.
- W1978429424 doi "https://doi.org/10.1016/0749-596x(88)90072-1" @default.
- W1978429424 hasPublicationYear "1988" @default.
- W1978429424 type Work @default.
- W1978429424 sameAs 1978429424 @default.
- W1978429424 citedByCount "252" @default.
- W1978429424 countsByYear W19784294242012 @default.
- W1978429424 countsByYear W19784294242013 @default.
- W1978429424 countsByYear W19784294242014 @default.
- W1978429424 countsByYear W19784294242015 @default.
- W1978429424 countsByYear W19784294242016 @default.
- W1978429424 countsByYear W19784294242017 @default.
- W1978429424 countsByYear W19784294242018 @default.
- W1978429424 countsByYear W19784294242019 @default.
- W1978429424 countsByYear W19784294242020 @default.
- W1978429424 countsByYear W19784294242021 @default.
- W1978429424 countsByYear W19784294242022 @default.
- W1978429424 countsByYear W19784294242023 @default.
- W1978429424 crossrefType "journal-article" @default.
- W1978429424 hasAuthorship W1978429424A5018751528 @default.
- W1978429424 hasAuthorship W1978429424A5073735097 @default.
- W1978429424 hasConcept C104122410 @default.
- W1978429424 hasConcept C111472728 @default.
- W1978429424 hasConcept C119857082 @default.
- W1978429424 hasConcept C127413603 @default.
- W1978429424 hasConcept C13280743 @default.
- W1978429424 hasConcept C138885662 @default.
- W1978429424 hasConcept C154945302 @default.
- W1978429424 hasConcept C15744967 @default.
- W1978429424 hasConcept C185798385 @default.
- W1978429424 hasConcept C188147891 @default.
- W1978429424 hasConcept C205649164 @default.
- W1978429424 hasConcept C2775922551 @default.
- W1978429424 hasConcept C2776372474 @default.
- W1978429424 hasConcept C2777212361 @default.
- W1978429424 hasConcept C2779127903 @default.
- W1978429424 hasConcept C2780586882 @default.
- W1978429424 hasConcept C41008148 @default.
- W1978429424 hasConcept C50644808 @default.