Matches in SemOpenAlex for { <https://semopenalex.org/work/W1978455846> ?p ?o ?g. }
- W1978455846 endingPage "161" @default.
- W1978455846 startingPage "143" @default.
- W1978455846 abstract "The lack of a deeper understanding of how olfactory sensory neurons (OSNs) encode odors has hindered the progress in understanding the olfactory signal processing in higher brain centers. Here we employ methods of system identification to investigate the encoding of time-varying odor stimuli and their representation for further processing in the spike domain by Drosophila OSNs. In order to apply system identification techniques, we built a novel low-turbulence odor delivery system that allowed us to deliver airborne stimuli in a precise and reproducible fashion. The system provides a 1% tolerance in stimulus reproducibility and an exact control of odor concentration and concentration gradient on a millisecond time scale. Using this novel setup, we recorded and analyzed the in-vivo response of OSNs to a wide range of time-varying odor waveforms. We report for the first time that across trials the response of OR59b OSNs is very precise and reproducible. Further, we empirically show that the response of an OSN depends not only on the concentration, but also on the rate of change of the odor concentration. Moreover, we demonstrate that a two-dimensional (2D) Encoding Manifold in a concentration-concentration gradient space provides a quantitative description of the neuron’s response. We then use the white noise system identification methodology to construct one-dimensional (1D) and two-dimensional (2D) Linear-Nonlinear-Poisson (LNP) cascade models of the sensory neuron for a fixed mean odor concentration and fixed contrast. We show that in terms of predicting the intensity rate of the spike train, the 2D LNP model performs on par with the 1D LNP model, with a root mean-square error (RMSE) increase of about 5 to 10%. Surprisingly, we find that for a fixed contrast of the white noise odor waveforms, the nonlinear block of each of the two models changes with the mean input concentration. The shape of the nonlinearities of both the 1D and the 2D LNP model appears to be, for a fixed mean of the odor waveform, independent of the stimulus contrast. This suggests that white noise system identification of Or59b OSNs only depends on the first moment of the odor concentration. Finally, by comparing the 2D Encoding Manifold and the 2D LNP model, we demonstrate that the OSN identification results depend on the particular type of the employed test odor waveforms. This suggests an adaptive neural encoding model for Or59b OSNs that changes its nonlinearity in response to the odor concentration waveforms." @default.
- W1978455846 created "2016-06-24" @default.
- W1978455846 creator A5016276103 @default.
- W1978455846 creator A5040758341 @default.
- W1978455846 creator A5084293784 @default.
- W1978455846 date "2010-08-21" @default.
- W1978455846 modified "2023-10-16" @default.
- W1978455846 title "System identification of Drosophila olfactory sensory neurons" @default.
- W1978455846 cites W1551222130 @default.
- W1978455846 cites W1583666889 @default.
- W1978455846 cites W1585732096 @default.
- W1978455846 cites W1592082209 @default.
- W1978455846 cites W1694767778 @default.
- W1978455846 cites W1976718001 @default.
- W1978455846 cites W1979275115 @default.
- W1978455846 cites W1980662538 @default.
- W1978455846 cites W1985940938 @default.
- W1978455846 cites W1989316979 @default.
- W1978455846 cites W1996323440 @default.
- W1978455846 cites W2005927182 @default.
- W1978455846 cites W2013374996 @default.
- W1978455846 cites W2014574356 @default.
- W1978455846 cites W2017111506 @default.
- W1978455846 cites W2023823198 @default.
- W1978455846 cites W2035432463 @default.
- W1978455846 cites W2082684474 @default.
- W1978455846 cites W2082869690 @default.
- W1978455846 cites W2089644939 @default.
- W1978455846 cites W2091501985 @default.
- W1978455846 cites W2092822357 @default.
- W1978455846 cites W2095868797 @default.
- W1978455846 cites W2097167689 @default.
- W1978455846 cites W2098531347 @default.
- W1978455846 cites W2101660706 @default.
- W1978455846 cites W2102401377 @default.
- W1978455846 cites W2103162253 @default.
- W1978455846 cites W2113335883 @default.
- W1978455846 cites W2114185957 @default.
- W1978455846 cites W2119346586 @default.
- W1978455846 cites W2119581224 @default.
- W1978455846 cites W2125498357 @default.
- W1978455846 cites W2125617977 @default.
- W1978455846 cites W2131220353 @default.
- W1978455846 cites W2132899322 @default.
- W1978455846 cites W2138884267 @default.
- W1978455846 cites W2145268430 @default.
- W1978455846 cites W2499601348 @default.
- W1978455846 cites W4231637332 @default.
- W1978455846 doi "https://doi.org/10.1007/s10827-010-0265-0" @default.
- W1978455846 hasPubMedCentralId "https://www.ncbi.nlm.nih.gov/pmc/articles/3736744" @default.
- W1978455846 hasPubMedId "https://pubmed.ncbi.nlm.nih.gov/20730480" @default.
- W1978455846 hasPublicationYear "2010" @default.
- W1978455846 type Work @default.
- W1978455846 sameAs 1978455846 @default.
- W1978455846 citedByCount "79" @default.
- W1978455846 countsByYear W19784558462012 @default.
- W1978455846 countsByYear W19784558462013 @default.
- W1978455846 countsByYear W19784558462014 @default.
- W1978455846 countsByYear W19784558462015 @default.
- W1978455846 countsByYear W19784558462016 @default.
- W1978455846 countsByYear W19784558462017 @default.
- W1978455846 countsByYear W19784558462018 @default.
- W1978455846 countsByYear W19784558462019 @default.
- W1978455846 countsByYear W19784558462020 @default.
- W1978455846 countsByYear W19784558462021 @default.
- W1978455846 countsByYear W19784558462022 @default.
- W1978455846 countsByYear W19784558462023 @default.
- W1978455846 crossrefType "journal-article" @default.
- W1978455846 hasAuthorship W1978455846A5016276103 @default.
- W1978455846 hasAuthorship W1978455846A5040758341 @default.
- W1978455846 hasAuthorship W1978455846A5084293784 @default.
- W1978455846 hasBestOaLocation W19784558462 @default.
- W1978455846 hasConcept C154945302 @default.
- W1978455846 hasConcept C15744967 @default.
- W1978455846 hasConcept C163214680 @default.
- W1978455846 hasConcept C169760540 @default.
- W1978455846 hasConcept C186060115 @default.
- W1978455846 hasConcept C201792869 @default.
- W1978455846 hasConcept C2778916471 @default.
- W1978455846 hasConcept C2779918689 @default.
- W1978455846 hasConcept C2780050217 @default.
- W1978455846 hasConcept C41008148 @default.
- W1978455846 hasConcept C542102704 @default.
- W1978455846 hasConcept C86803240 @default.
- W1978455846 hasConcept C94487597 @default.
- W1978455846 hasConceptScore W1978455846C154945302 @default.
- W1978455846 hasConceptScore W1978455846C15744967 @default.
- W1978455846 hasConceptScore W1978455846C163214680 @default.
- W1978455846 hasConceptScore W1978455846C169760540 @default.
- W1978455846 hasConceptScore W1978455846C186060115 @default.
- W1978455846 hasConceptScore W1978455846C201792869 @default.
- W1978455846 hasConceptScore W1978455846C2778916471 @default.
- W1978455846 hasConceptScore W1978455846C2779918689 @default.
- W1978455846 hasConceptScore W1978455846C2780050217 @default.
- W1978455846 hasConceptScore W1978455846C41008148 @default.
- W1978455846 hasConceptScore W1978455846C542102704 @default.
- W1978455846 hasConceptScore W1978455846C86803240 @default.
- W1978455846 hasConceptScore W1978455846C94487597 @default.