Matches in SemOpenAlex for { <https://semopenalex.org/work/W1978480623> ?p ?o ?g. }
- W1978480623 endingPage "25" @default.
- W1978480623 startingPage "12" @default.
- W1978480623 abstract "Abstract The aims of the study were to utilize vibrational spectroscopy as a rapid predictive tool of forage quality; to compare two preparation methods, freeze- (FD) vs. oven-dried (OD); to focus on the progression of intra- and inter-family maturity by adopting a multivariate crop maturity index (CMI) based on composition, digestibility and tillage traits. A panel of forages (n = 158) composed of 12 crops (borage, chia, false flax, flax, galega, hemp, perilla, quinoa, ravizzone, safflower, sunflower and white lupin) derived from 8 botanic families, sampled at different vegetative stages, and which were FD or OD, were examined. Two spectrometers were used at different spectral regions: a Perkin Elmer IdentiCheck™ (PE, B-band, 714–1025 nm; C-band, 1026–2500 nm, D-band, 2501–3333 nm) and a portable Analytical Spectral Device (ASD, A-band, 350–713 nm, UV–Vis; B-band, as above). The absorption spectra were constantly higher in the OD samples and showed very high discriminability. The average prediction response (RPD, defined as the performance-deviation ratio) was better with the PE instrument, because of its enhanced band capabilities. However, the response over the spectral regions differed on the basis of which instrument was used and according to the preparations. The ASD instrument was more efficient in the B-band, for the OD preparation and better than PE in the pooled calibration (RPD:1.63 vs. 1.20; P=0.0005). A significant superiority in the NIR C-band for the FD preparation was observed (RPD: 2.46 vs. 1.95; P=0.004), while, unexpectedly, the MIR D-band was 25% more performing (RPD: 2.78 vs. 2.21; P=0.0005). The ash, the neutral detergent fiber (NDFom) and its indigestible part (INDF) were placed at the highest prediction rank in both instruments, albeit at different precision levels, caused by the different instrumental capabilities, with an overall 1-VR avg. of 0.81 (1-VR, defined as the r-square of internal cross-validation). In a composite FD-OD equation, the best prediction was made by the INDF (1-VR of 0.91 and 0.88 for the PE and ASD instruments, respectively). The worst performances were observed for the digestible neutral detergent fiber (DNDF) prediction. The CMI was influenced by the INDF (R2 0.91) and was accurately predicted by vibrational spectroscopy (RPD 5.2 and 2.9 for PE and ASD, respectively). CMI was able to summarize the botanical differences and highlight a rank between the eight families from the less mature pole: Boraginaceae and Chenopodiaceae" @default.
- W1978480623 created "2016-06-24" @default.
- W1978480623 creator A5037377741 @default.
- W1978480623 creator A5039921202 @default.
- W1978480623 creator A5053969950 @default.
- W1978480623 date "2014-08-01" @default.
- W1978480623 modified "2023-10-16" @default.
- W1978480623 title "Vibrational spectroscopy to predict in vitro digestibility and the maturity index of different forage crops during the growing cycle and after freeze- or oven-drying treatment" @default.
- W1978480623 cites W1494775115 @default.
- W1978480623 cites W1963516034 @default.
- W1978480623 cites W1966089218 @default.
- W1978480623 cites W1970079167 @default.
- W1978480623 cites W1978225376 @default.
- W1978480623 cites W1979992633 @default.
- W1978480623 cites W1990425221 @default.
- W1978480623 cites W1997087247 @default.
- W1978480623 cites W2019560996 @default.
- W1978480623 cites W2021118519 @default.
- W1978480623 cites W2028365570 @default.
- W1978480623 cites W2029941360 @default.
- W1978480623 cites W2034104906 @default.
- W1978480623 cites W2047587738 @default.
- W1978480623 cites W2051088483 @default.
- W1978480623 cites W2065105440 @default.
- W1978480623 cites W2066394966 @default.
- W1978480623 cites W2071093163 @default.
- W1978480623 cites W2073298037 @default.
- W1978480623 cites W2088216621 @default.
- W1978480623 cites W2098051912 @default.
- W1978480623 cites W2100115998 @default.
- W1978480623 cites W2100399835 @default.
- W1978480623 cites W2113389960 @default.
- W1978480623 cites W2116674382 @default.
- W1978480623 cites W2118476033 @default.
- W1978480623 cites W2126362053 @default.
- W1978480623 cites W2126564297 @default.
- W1978480623 cites W2130550013 @default.
- W1978480623 cites W2133912297 @default.
- W1978480623 cites W2136962665 @default.
- W1978480623 cites W2145653886 @default.
- W1978480623 cites W2146934185 @default.
- W1978480623 cites W2150046784 @default.
- W1978480623 cites W2151172519 @default.
- W1978480623 cites W2159627410 @default.
- W1978480623 cites W2164583936 @default.
- W1978480623 cites W2188746340 @default.
- W1978480623 cites W2332568973 @default.
- W1978480623 cites W2615398127 @default.
- W1978480623 doi "https://doi.org/10.1016/j.anifeedsci.2014.04.019" @default.
- W1978480623 hasPublicationYear "2014" @default.
- W1978480623 type Work @default.
- W1978480623 sameAs 1978480623 @default.
- W1978480623 citedByCount "16" @default.
- W1978480623 countsByYear W19784806232014 @default.
- W1978480623 countsByYear W19784806232015 @default.
- W1978480623 countsByYear W19784806232016 @default.
- W1978480623 countsByYear W19784806232017 @default.
- W1978480623 countsByYear W19784806232018 @default.
- W1978480623 countsByYear W19784806232019 @default.
- W1978480623 countsByYear W19784806232020 @default.
- W1978480623 countsByYear W19784806232021 @default.
- W1978480623 countsByYear W19784806232022 @default.
- W1978480623 countsByYear W19784806232023 @default.
- W1978480623 crossrefType "journal-article" @default.
- W1978480623 hasAuthorship W1978480623A5037377741 @default.
- W1978480623 hasAuthorship W1978480623A5039921202 @default.
- W1978480623 hasAuthorship W1978480623A5053969950 @default.
- W1978480623 hasBestOaLocation W19784806232 @default.
- W1978480623 hasConcept C101433766 @default.
- W1978480623 hasConcept C136764020 @default.
- W1978480623 hasConcept C138496976 @default.
- W1978480623 hasConcept C15744967 @default.
- W1978480623 hasConcept C185592680 @default.
- W1978480623 hasConcept C2777382242 @default.
- W1978480623 hasConcept C2779370140 @default.
- W1978480623 hasConcept C39432304 @default.
- W1978480623 hasConcept C41008148 @default.
- W1978480623 hasConcept C6557445 @default.
- W1978480623 hasConcept C86803240 @default.
- W1978480623 hasConceptScore W1978480623C101433766 @default.
- W1978480623 hasConceptScore W1978480623C136764020 @default.
- W1978480623 hasConceptScore W1978480623C138496976 @default.
- W1978480623 hasConceptScore W1978480623C15744967 @default.
- W1978480623 hasConceptScore W1978480623C185592680 @default.
- W1978480623 hasConceptScore W1978480623C2777382242 @default.
- W1978480623 hasConceptScore W1978480623C2779370140 @default.
- W1978480623 hasConceptScore W1978480623C39432304 @default.
- W1978480623 hasConceptScore W1978480623C41008148 @default.
- W1978480623 hasConceptScore W1978480623C6557445 @default.
- W1978480623 hasConceptScore W1978480623C86803240 @default.
- W1978480623 hasLocation W19784806231 @default.
- W1978480623 hasLocation W19784806232 @default.
- W1978480623 hasOpenAccess W1978480623 @default.
- W1978480623 hasPrimaryLocation W19784806231 @default.
- W1978480623 hasRelatedWork W1597542226 @default.
- W1978480623 hasRelatedWork W1964467710 @default.
- W1978480623 hasRelatedWork W1978635366 @default.
- W1978480623 hasRelatedWork W1980766339 @default.