Matches in SemOpenAlex for { <https://semopenalex.org/work/W1978482772> ?p ?o ?g. }
- W1978482772 endingPage "368" @default.
- W1978482772 startingPage "364" @default.
- W1978482772 abstract "The X-ray crystal structure of a member of the glucose-specific phosphotransferase system (EIIAGlc) bound to the MalFGK2 maltose transporter is presented, revealing that two EIIAGlcproteins bind to the cytoplasmic ATPase subunits of the maltose transporter to stabilize it in an inward-facing conformation that prevents ATP hydrolysis. When a preferred carbon source is available, bacteria use a system known as carbon catabolite repression (CCR) to halt the synthesis and activity of proteins involved in the usage of less-preferred carbon sources. In Escherichia coli the glucose-specific phosphotransferase system, enzyme IIA (EIIAGlc), is central to this control system, and when glucose is available in the environment transport of other sugars, such as maltose, is shut down. This paper reports the X-ray crystal structure of a EIIAGlc bound to the MalFGK2 maltose transporter. The structure reveals that two EIIAGlc molecules bind to the cytoplasmic ATPase subunits of the maltose transporter, stabilizing it in an inward-facing conformation and preventing the structural rearrangements necessary for ATP hydrolysis — and maltose transport. Efficient carbon utilization is critical to the survival of microorganisms in competitive environments. To optimize energy usage, bacteria have developed an integrated control system to preferentially uptake carbohydrates that support rapid growth. The availability of a preferred carbon source, such as glucose, represses the synthesis and activities of proteins necessary for the transport and metabolism of secondary carbon sources. This regulatory phenomenon is defined as carbon catabolite repression1. In enteric bacteria, the key player of carbon catabolite repression is a component of the glucose-specific phosphotransferase system, enzyme IIA (EIIAGlc)1,2. It is known that unphosphorylated EIIAGlc binds to and inhibits a variety of transporters when glucose is available1,2. However, understanding the underlying molecular mechanism has been hindered by the complete absence of structures for any EIIAGlc–transporter complexes. Here we present the 3.9 Å crystal structure of Escherichia coli EIIAGlc in complex with the maltose transporter, an ATP-binding cassette (ABC) transporter. The structure shows that two EIIAGlc molecules bind to the cytoplasmic ATPase subunits, stabilizing the transporter in an inward-facing conformation and preventing the structural rearrangements necessary for ATP hydrolysis. We also show that the half-maximal inhibitory concentrations of the full-length EIIAGlc and an amino-terminal truncation mutant differ by 60-fold, consistent with the hypothesis that the amino-terminal region, disordered in the crystal structure, functions as a membrane anchor to increase the effective EIIAGlc concentration at the membrane3,4. Together these data suggest a model of how the central regulatory protein EIIAGlc allosterically inhibits maltose uptake in E. coli." @default.
- W1978482772 created "2016-06-24" @default.
- W1978482772 creator A5042484728 @default.
- W1978482772 creator A5049151333 @default.
- W1978482772 creator A5064666218 @default.
- W1978482772 creator A5078325329 @default.
- W1978482772 date "2013-06-16" @default.
- W1978482772 modified "2023-10-14" @default.
- W1978482772 title "Carbon catabolite repression of the maltose transporter revealed by X-ray crystallography" @default.
- W1978482772 cites W1488743900 @default.
- W1978482772 cites W1494524731 @default.
- W1978482772 cites W1513683440 @default.
- W1978482772 cites W1658694464 @default.
- W1978482772 cites W1938522541 @default.
- W1978482772 cites W1973119987 @default.
- W1978482772 cites W1983739396 @default.
- W1978482772 cites W1995017064 @default.
- W1978482772 cites W1998093640 @default.
- W1978482772 cites W1998665732 @default.
- W1978482772 cites W2001641653 @default.
- W1978482772 cites W2007737254 @default.
- W1978482772 cites W2018073151 @default.
- W1978482772 cites W2019555858 @default.
- W1978482772 cites W2020405262 @default.
- W1978482772 cites W2020465369 @default.
- W1978482772 cites W2022976733 @default.
- W1978482772 cites W2026984793 @default.
- W1978482772 cites W2029822662 @default.
- W1978482772 cites W2035506170 @default.
- W1978482772 cites W2036449301 @default.
- W1978482772 cites W2039771729 @default.
- W1978482772 cites W2047284776 @default.
- W1978482772 cites W2049903258 @default.
- W1978482772 cites W2056082671 @default.
- W1978482772 cites W2068182196 @default.
- W1978482772 cites W2068372836 @default.
- W1978482772 cites W2076174486 @default.
- W1978482772 cites W2089558887 @default.
- W1978482772 cites W2102041830 @default.
- W1978482772 cites W2119625136 @default.
- W1978482772 cites W2135066023 @default.
- W1978482772 cites W2144081223 @default.
- W1978482772 cites W2147651873 @default.
- W1978482772 cites W2154631064 @default.
- W1978482772 cites W2163341755 @default.
- W1978482772 cites W2166374078 @default.
- W1978482772 cites W2170564362 @default.
- W1978482772 doi "https://doi.org/10.1038/nature12232" @default.
- W1978482772 hasPubMedCentralId "https://www.ncbi.nlm.nih.gov/pmc/articles/3875231" @default.
- W1978482772 hasPubMedId "https://pubmed.ncbi.nlm.nih.gov/23770568" @default.
- W1978482772 hasPublicationYear "2013" @default.
- W1978482772 type Work @default.
- W1978482772 sameAs 1978482772 @default.
- W1978482772 citedByCount "80" @default.
- W1978482772 countsByYear W19784827722013 @default.
- W1978482772 countsByYear W19784827722014 @default.
- W1978482772 countsByYear W19784827722015 @default.
- W1978482772 countsByYear W19784827722016 @default.
- W1978482772 countsByYear W19784827722017 @default.
- W1978482772 countsByYear W19784827722018 @default.
- W1978482772 countsByYear W19784827722019 @default.
- W1978482772 countsByYear W19784827722020 @default.
- W1978482772 countsByYear W19784827722021 @default.
- W1978482772 countsByYear W19784827722022 @default.
- W1978482772 countsByYear W19784827722023 @default.
- W1978482772 crossrefType "journal-article" @default.
- W1978482772 hasAuthorship W1978482772A5042484728 @default.
- W1978482772 hasAuthorship W1978482772A5049151333 @default.
- W1978482772 hasAuthorship W1978482772A5064666218 @default.
- W1978482772 hasAuthorship W1978482772A5078325329 @default.
- W1978482772 hasBestOaLocation W19784827722 @default.
- W1978482772 hasConcept C104317684 @default.
- W1978482772 hasConcept C123894998 @default.
- W1978482772 hasConcept C134018914 @default.
- W1978482772 hasConcept C143065580 @default.
- W1978482772 hasConcept C161573976 @default.
- W1978482772 hasConcept C181199279 @default.
- W1978482772 hasConcept C185592680 @default.
- W1978482772 hasConcept C190114821 @default.
- W1978482772 hasConcept C2778197599 @default.
- W1978482772 hasConcept C2779306644 @default.
- W1978482772 hasConcept C2780676925 @default.
- W1978482772 hasConcept C40767141 @default.
- W1978482772 hasConcept C45656491 @default.
- W1978482772 hasConcept C547475151 @default.
- W1978482772 hasConcept C55493867 @default.
- W1978482772 hasConcept C83941689 @default.
- W1978482772 hasConcept C86803240 @default.
- W1978482772 hasConceptScore W1978482772C104317684 @default.
- W1978482772 hasConceptScore W1978482772C123894998 @default.
- W1978482772 hasConceptScore W1978482772C134018914 @default.
- W1978482772 hasConceptScore W1978482772C143065580 @default.
- W1978482772 hasConceptScore W1978482772C161573976 @default.
- W1978482772 hasConceptScore W1978482772C181199279 @default.
- W1978482772 hasConceptScore W1978482772C185592680 @default.
- W1978482772 hasConceptScore W1978482772C190114821 @default.
- W1978482772 hasConceptScore W1978482772C2778197599 @default.
- W1978482772 hasConceptScore W1978482772C2779306644 @default.