Matches in SemOpenAlex for { <https://semopenalex.org/work/W1978487218> ?p ?o ?g. }
- W1978487218 endingPage "842" @default.
- W1978487218 startingPage "823" @default.
- W1978487218 abstract "The radiation diffusion process is considered from the standpoint of the free paths of the diffusing resonance quanta as influenced by the Doppler and other line broadening effects. Abnormally long free paths are found to be of such importance as to enable resonance radiation to escape from a body of gas faster than has usually been supposed. It is assumed that a large concentration of diffusing resonance quanta will, on the basis of Doppler broadening only, give rise to a characteristic excitation of atoms, as dependent on their speeds, which can be represented by a distribution function which will lie between two limiting distribution functions, namely (1) Maxwell's distribution function and (2) a distribution function expressing a lower relative excitation of the high speed atoms than that of Maxwell, based on the excitation of all atoms as if by absorption of the core of the line. On the basis of (1) and (2), limiting expressions are derived for: (a) the fraction of emitted quanta traversing at least a given distance before absorption, (b) the diffusion coefficient, (c) the average square free path, (d) the average free path. A fundamental difference between radiation diffusion and molecular diffusion appears in that whereas (a) decreases exponentially with the distance in the latter case it is found to decrease only linearly (roughly) with the distance in the former case. For this reason very long free paths are found to be of relatively great importance in radiation diffusion. It is found that, for a gas container of infinite size, (b), (c), and (d) are all infinite. For a gas container of finite size, estimates of the order of magnitude of the apparent or effective values of (b), (c), and (d) are made on the basis of special assumptions. It is found that $(mathrm{b})=frac{(frac{1}{6}){p}^{2}}{ensuremath{tau}}$ where $stackrel{-}{{p}^{2}}$ is the average square free path and $ensuremath{tau}$ is the mean life of the excited atom. The same formula is found to hold for the coefficient of molecular diffusion if $stackrel{-}{{p}^{2}}$ is used to denote the average square molecular free path and $ensuremath{tau}$ is used to represent the mean time between collisions. It is pointed out that coupling and other line broadening effects will still further increase the importance of extremely long free paths and hence also the rapidity of escape of resonance radiation from a gas. The results of the Hg resonance radiation imprisonment experiments of Zemansky and of Webb and Messenger are discussed and are shown to be in accord with the conclusions arrived at above that resonance radiation escapes from a gas faster than according to classical theories of radiation diffusion, the effect being the greater the larger the gas volume or density. The rapidity of escape of $ensuremath{lambda}2537$ at the lower gas densities ($N={10}^{15}$ ${mathrm{cm}}^{ensuremath{-}3}$ or less) in these experiments can be largely accounted for by the Doppler effect on the basis of a diffusion coefficient proportional to the effective average square free path as calculated by the methods of the present paper; at the higher gas densities ($N=30ifmmodetimeselsetexttimesfi{}{10}^{15}$ ${mathrm{cm}}^{ensuremath{-}3}$) the escape is more rapid than can be accounted for by these methods and this is attributed to coupling or other pressure broadening." @default.
- W1978487218 created "2016-06-24" @default.
- W1978487218 creator A5017995972 @default.
- W1978487218 date "1932-12-15" @default.
- W1978487218 modified "2023-09-26" @default.
- W1978487218 title "On Radiation Diffusion and the Rapidity of Escape of Resonance Radiation from a Gas" @default.
- W1978487218 cites W1494088173 @default.
- W1978487218 cites W1629529819 @default.
- W1978487218 cites W1676498756 @default.
- W1978487218 cites W1972727412 @default.
- W1978487218 cites W1975963646 @default.
- W1978487218 cites W1988334743 @default.
- W1978487218 cites W1990386166 @default.
- W1978487218 cites W1990566321 @default.
- W1978487218 cites W1996904568 @default.
- W1978487218 cites W2003186644 @default.
- W1978487218 cites W2005958718 @default.
- W1978487218 cites W2014668385 @default.
- W1978487218 cites W2015469435 @default.
- W1978487218 cites W2016805148 @default.
- W1978487218 cites W2019088242 @default.
- W1978487218 cites W2030052822 @default.
- W1978487218 cites W2040755558 @default.
- W1978487218 cites W2043608142 @default.
- W1978487218 cites W2048238784 @default.
- W1978487218 cites W2060978990 @default.
- W1978487218 cites W2061161064 @default.
- W1978487218 cites W2061861661 @default.
- W1978487218 cites W2063114740 @default.
- W1978487218 cites W2072231497 @default.
- W1978487218 cites W2076867734 @default.
- W1978487218 cites W2086902440 @default.
- W1978487218 cites W2089253635 @default.
- W1978487218 cites W2093634860 @default.
- W1978487218 cites W2093770538 @default.
- W1978487218 cites W2095582822 @default.
- W1978487218 cites W2319353130 @default.
- W1978487218 cites W2322040387 @default.
- W1978487218 cites W3004565631 @default.
- W1978487218 cites W3163326572 @default.
- W1978487218 doi "https://doi.org/10.1103/physrev.42.823" @default.
- W1978487218 hasPublicationYear "1932" @default.
- W1978487218 type Work @default.
- W1978487218 sameAs 1978487218 @default.
- W1978487218 citedByCount "65" @default.
- W1978487218 countsByYear W19784872182012 @default.
- W1978487218 countsByYear W19784872182013 @default.
- W1978487218 countsByYear W19784872182014 @default.
- W1978487218 countsByYear W19784872182015 @default.
- W1978487218 countsByYear W19784872182018 @default.
- W1978487218 countsByYear W19784872182021 @default.
- W1978487218 crossrefType "journal-article" @default.
- W1978487218 hasAuthorship W1978487218A5017995972 @default.
- W1978487218 hasConcept C120665830 @default.
- W1978487218 hasConcept C121332964 @default.
- W1978487218 hasConcept C125287762 @default.
- W1978487218 hasConcept C139210041 @default.
- W1978487218 hasConcept C153385146 @default.
- W1978487218 hasConcept C164602753 @default.
- W1978487218 hasConcept C168986899 @default.
- W1978487218 hasConcept C184779094 @default.
- W1978487218 hasConcept C186603090 @default.
- W1978487218 hasConcept C191486275 @default.
- W1978487218 hasConcept C3017618536 @default.
- W1978487218 hasConcept C41008148 @default.
- W1978487218 hasConcept C56739046 @default.
- W1978487218 hasConcept C62520636 @default.
- W1978487218 hasConcept C69357855 @default.
- W1978487218 hasConcept C83581075 @default.
- W1978487218 hasConceptScore W1978487218C120665830 @default.
- W1978487218 hasConceptScore W1978487218C121332964 @default.
- W1978487218 hasConceptScore W1978487218C125287762 @default.
- W1978487218 hasConceptScore W1978487218C139210041 @default.
- W1978487218 hasConceptScore W1978487218C153385146 @default.
- W1978487218 hasConceptScore W1978487218C164602753 @default.
- W1978487218 hasConceptScore W1978487218C168986899 @default.
- W1978487218 hasConceptScore W1978487218C184779094 @default.
- W1978487218 hasConceptScore W1978487218C186603090 @default.
- W1978487218 hasConceptScore W1978487218C191486275 @default.
- W1978487218 hasConceptScore W1978487218C3017618536 @default.
- W1978487218 hasConceptScore W1978487218C41008148 @default.
- W1978487218 hasConceptScore W1978487218C56739046 @default.
- W1978487218 hasConceptScore W1978487218C62520636 @default.
- W1978487218 hasConceptScore W1978487218C69357855 @default.
- W1978487218 hasConceptScore W1978487218C83581075 @default.
- W1978487218 hasIssue "6" @default.
- W1978487218 hasLocation W19784872181 @default.
- W1978487218 hasOpenAccess W1978487218 @default.
- W1978487218 hasPrimaryLocation W19784872181 @default.
- W1978487218 hasRelatedWork W1995639166 @default.
- W1978487218 hasRelatedWork W1997086491 @default.
- W1978487218 hasRelatedWork W1998220702 @default.
- W1978487218 hasRelatedWork W2000899669 @default.
- W1978487218 hasRelatedWork W2030827245 @default.
- W1978487218 hasRelatedWork W2057490834 @default.
- W1978487218 hasRelatedWork W2068774431 @default.
- W1978487218 hasRelatedWork W2091173116 @default.
- W1978487218 hasRelatedWork W2142929710 @default.