Matches in SemOpenAlex for { <https://semopenalex.org/work/W1978534211> ?p ?o ?g. }
- W1978534211 abstract "Semiconductor nanowires (NWs) have ideal morphologies to act as active parts and connections in nanodevices since they naturally restrict the conduction channels and periodicity to one dimension. The advantages from the reduced spatial dimension can be greatly enhanced by wisely selecting the materials composing the NWs, through the knowledge of the properties of their bulk counterparts. NW's properties can still be tailored by managing (i) internal or intrinsic characteristics as diameters, growth directions, structural phases, and the faceting or saturation of surfaces, and/or (ii) external or extrinsic influences as applied electric, magnetic, thermal, and mechanical fields. Bulk InAs has one of the lowest electron effective-masses among binary III-V semiconducting materials while bulk InP shows excellent optical properties, which make InAs and InP NWs candidates for optoelectronic materials. In this work, we use first-principles calculations to study the structural, electronic, and mechanical properties of [111] zinc-blende InAs and InP NWs as a function of diameter (ranging from 0.5 to 2.0 nm). The influence of external mechanical stress on the electronic properties is also analyzed. The axial lattice constants of the NWs are seen to decrease with decreasing diameter, as a consequence of a shorter surface lattice constant of the NWs, as compared to their bulk values. The Young's modulus of both InAs and InP NWs is determined to decrease while the Poisson's ratio to increase with decreasing diameters, with deviations from the bulk Young's modulus estimated to occur for NWs with diameters lower than 15 nm. The increase in the band-gaps with decreasing diameters is seen to be slower than the expected from simple quantum-mechanical models ($1/{D}^{2}$, where $D$ is the diameter), mainly for the smallest $(<1.0text{ }text{nm})$ diameters. The electron effective-masses are seen to increase with decreasing diameters, due to a $k$-dependent energy shift of the conduction-band minimum. The calculated work functions for both NWs show a decrease with decreasing diameters. The change in the NWs' band-edge eigenvalues with axial strain is calculated and the band-gap deformation potentials are determined and shown to change in signal within the range of studied diameters. The influence of the mechanical strain on the electronic bands is analyzed in terms of electronic charge decompositions in directions parallel and perpendicular to the NWs' axes. Direct to indirect band-gap transitions are observed for compressive strains in very thin NWs. The hole effective-mass is seen to be lower than the corresponding electron effective-mass for the studied NWs." @default.
- W1978534211 created "2016-06-24" @default.
- W1978534211 creator A5004950718 @default.
- W1978534211 creator A5017173825 @default.
- W1978534211 date "2010-02-05" @default.
- W1978534211 modified "2023-09-23" @default.
- W1978534211 title "Diameter dependence of mechanical, electronic, and structural properties of InAs and InP nanowires: A first-principles study" @default.
- W1978534211 cites W1586668292 @default.
- W1978534211 cites W1965461869 @default.
- W1978534211 cites W1970127494 @default.
- W1978534211 cites W1972990074 @default.
- W1978534211 cites W1976072173 @default.
- W1978534211 cites W1976597701 @default.
- W1978534211 cites W1980515416 @default.
- W1978534211 cites W1985054360 @default.
- W1978534211 cites W1985555064 @default.
- W1978534211 cites W1987416224 @default.
- W1978534211 cites W1991419301 @default.
- W1978534211 cites W1991876866 @default.
- W1978534211 cites W1992884730 @default.
- W1978534211 cites W1992934352 @default.
- W1978534211 cites W1993324954 @default.
- W1978534211 cites W1993378267 @default.
- W1978534211 cites W1993576917 @default.
- W1978534211 cites W1994690904 @default.
- W1978534211 cites W1997714397 @default.
- W1978534211 cites W2001387957 @default.
- W1978534211 cites W2001989979 @default.
- W1978534211 cites W2002962459 @default.
- W1978534211 cites W2004635538 @default.
- W1978534211 cites W2006271366 @default.
- W1978534211 cites W2008188673 @default.
- W1978534211 cites W2021433273 @default.
- W1978534211 cites W2022891180 @default.
- W1978534211 cites W2026907619 @default.
- W1978534211 cites W2027296149 @default.
- W1978534211 cites W2027536275 @default.
- W1978534211 cites W2027798758 @default.
- W1978534211 cites W2036113194 @default.
- W1978534211 cites W2039137909 @default.
- W1978534211 cites W2044751305 @default.
- W1978534211 cites W2045260724 @default.
- W1978534211 cites W2046928783 @default.
- W1978534211 cites W2047700605 @default.
- W1978534211 cites W2049858709 @default.
- W1978534211 cites W2052637367 @default.
- W1978534211 cites W2056481478 @default.
- W1978534211 cites W2057240721 @default.
- W1978534211 cites W2060500958 @default.
- W1978534211 cites W2065321029 @default.
- W1978534211 cites W2067205850 @default.
- W1978534211 cites W2067446555 @default.
- W1978534211 cites W2067983335 @default.
- W1978534211 cites W2069487323 @default.
- W1978534211 cites W2072237880 @default.
- W1978534211 cites W2074132892 @default.
- W1978534211 cites W2075846483 @default.
- W1978534211 cites W2079105963 @default.
- W1978534211 cites W2079376410 @default.
- W1978534211 cites W2081933332 @default.
- W1978534211 cites W2083222334 @default.
- W1978534211 cites W2083981510 @default.
- W1978534211 cites W2085804738 @default.
- W1978534211 cites W2085919625 @default.
- W1978534211 cites W2088925839 @default.
- W1978534211 cites W2090791314 @default.
- W1978534211 cites W2097929361 @default.
- W1978534211 cites W2136359657 @default.
- W1978534211 cites W2141523934 @default.
- W1978534211 cites W2144829172 @default.
- W1978534211 cites W2146286748 @default.
- W1978534211 cites W3100328673 @default.
- W1978534211 cites W3141239301 @default.
- W1978534211 cites W4243826237 @default.
- W1978534211 cites W4293079290 @default.
- W1978534211 doi "https://doi.org/10.1103/physrevb.81.075408" @default.
- W1978534211 hasPublicationYear "2010" @default.
- W1978534211 type Work @default.
- W1978534211 sameAs 1978534211 @default.
- W1978534211 citedByCount "66" @default.
- W1978534211 countsByYear W19785342112012 @default.
- W1978534211 countsByYear W19785342112013 @default.
- W1978534211 countsByYear W19785342112014 @default.
- W1978534211 countsByYear W19785342112015 @default.
- W1978534211 countsByYear W19785342112016 @default.
- W1978534211 countsByYear W19785342112017 @default.
- W1978534211 countsByYear W19785342112018 @default.
- W1978534211 countsByYear W19785342112019 @default.
- W1978534211 countsByYear W19785342112020 @default.
- W1978534211 countsByYear W19785342112021 @default.
- W1978534211 countsByYear W19785342112022 @default.
- W1978534211 crossrefType "journal-article" @default.
- W1978534211 hasAuthorship W1978534211A5004950718 @default.
- W1978534211 hasAuthorship W1978534211A5017173825 @default.
- W1978534211 hasConcept C108225325 @default.
- W1978534211 hasConcept C113231013 @default.
- W1978534211 hasConcept C120665830 @default.
- W1978534211 hasConcept C121332964 @default.
- W1978534211 hasConcept C132612359 @default.
- W1978534211 hasConcept C159985019 @default.