Matches in SemOpenAlex for { <https://semopenalex.org/work/W1978632040> ?p ?o ?g. }
- W1978632040 endingPage "1438" @default.
- W1978632040 startingPage "1408" @default.
- W1978632040 abstract "We compare seven different strategies for computing spectrally-accurate approximations or differential equation solutions in a disk. Separation of variables for the Laplace operator yields an analytic solution as a Fourier–Bessel series, but this usually converges at an algebraic (sub-spectral) rate. The cylindrical Robert functions converge geometrically but are horribly ill-conditioned. The Zernike and Logan–Shepp polynomials span the same space, that of Cartesian polynomials of a given total degree, but the former allows partial factorization whereas the latter basis facilitates an efficient algorithm for solving the Poisson equation. The Zernike polynomials were independently rediscovered several times as the product of one-sided Jacobi polynomials in radius with a Fourier series in θ. Generically, the Zernike basis requires only half as many degrees of freedom to represent a complicated function on the disk as does a Chebyshev–Fourier basis, but the latter has the great advantage of being summed and interpolated entirely by the Fast Fourier Transform instead of the slower matrix multiplication transforms needed in radius by the Zernike basis. Conformally mapping a square to the disk and employing a bivariate Chebyshev expansion on the square is spectrally accurate, but clustering of grid points near the four singularities of the mapping makes this method less efficient than the rest, meritorious only as a quick-and-dirty way to adapt a solver-for-the-square to the disk. Radial basis functions can match the best other spectral methods in accuracy, but require slow non-tensor interpolation and summation methods. There is no single “best” basis for the disk, but we have laid out the merits and flaws of each spectral option." @default.
- W1978632040 created "2016-06-24" @default.
- W1978632040 creator A5005533689 @default.
- W1978632040 creator A5074056648 @default.
- W1978632040 date "2011-02-01" @default.
- W1978632040 modified "2023-09-24" @default.
- W1978632040 title "Comparing seven spectral methods for interpolation and for solving the Poisson equation in a disk: Zernike polynomials, Logan–Shepp ridge polynomials, Chebyshev–Fourier Series, cylindrical Robert functions, Bessel–Fourier expansions, square-to-disk conformal mapping and radial basis functions" @default.
- W1978632040 cites W1965939518 @default.
- W1978632040 cites W1966290381 @default.
- W1978632040 cites W1968838235 @default.
- W1978632040 cites W1971622337 @default.
- W1978632040 cites W1973663906 @default.
- W1978632040 cites W1974036520 @default.
- W1978632040 cites W1974210344 @default.
- W1978632040 cites W1979992576 @default.
- W1978632040 cites W1984241597 @default.
- W1978632040 cites W1985144286 @default.
- W1978632040 cites W1985313219 @default.
- W1978632040 cites W1985944800 @default.
- W1978632040 cites W1987943054 @default.
- W1978632040 cites W1991853838 @default.
- W1978632040 cites W1994465446 @default.
- W1978632040 cites W1995244151 @default.
- W1978632040 cites W1995989127 @default.
- W1978632040 cites W1997483910 @default.
- W1978632040 cites W1998286717 @default.
- W1978632040 cites W2001023302 @default.
- W1978632040 cites W2001596240 @default.
- W1978632040 cites W2003363173 @default.
- W1978632040 cites W2005605050 @default.
- W1978632040 cites W2007211908 @default.
- W1978632040 cites W2008224406 @default.
- W1978632040 cites W2015725973 @default.
- W1978632040 cites W2016358123 @default.
- W1978632040 cites W2019177905 @default.
- W1978632040 cites W2021214077 @default.
- W1978632040 cites W2022412430 @default.
- W1978632040 cites W2029055820 @default.
- W1978632040 cites W2035532227 @default.
- W1978632040 cites W2040148987 @default.
- W1978632040 cites W2042163089 @default.
- W1978632040 cites W2048732763 @default.
- W1978632040 cites W2050361351 @default.
- W1978632040 cites W2051478763 @default.
- W1978632040 cites W2051931521 @default.
- W1978632040 cites W2052075272 @default.
- W1978632040 cites W2053076682 @default.
- W1978632040 cites W2056658486 @default.
- W1978632040 cites W2065043512 @default.
- W1978632040 cites W2068568713 @default.
- W1978632040 cites W2072929059 @default.
- W1978632040 cites W2074402890 @default.
- W1978632040 cites W2074869302 @default.
- W1978632040 cites W2076338048 @default.
- W1978632040 cites W2076505678 @default.
- W1978632040 cites W2081694467 @default.
- W1978632040 cites W2083594921 @default.
- W1978632040 cites W2085234101 @default.
- W1978632040 cites W2085900941 @default.
- W1978632040 cites W2085932179 @default.
- W1978632040 cites W2086569716 @default.
- W1978632040 cites W2088246029 @default.
- W1978632040 cites W2089245375 @default.
- W1978632040 cites W2092850129 @default.
- W1978632040 cites W2094517399 @default.
- W1978632040 cites W2095389137 @default.
- W1978632040 cites W2107699930 @default.
- W1978632040 cites W2109886257 @default.
- W1978632040 cites W2115050719 @default.
- W1978632040 cites W2122375671 @default.
- W1978632040 cites W2132033680 @default.
- W1978632040 cites W2133898637 @default.
- W1978632040 cites W2137700088 @default.
- W1978632040 cites W2141202287 @default.
- W1978632040 cites W2141358704 @default.
- W1978632040 cites W2141855928 @default.
- W1978632040 cites W2141955292 @default.
- W1978632040 cites W2144292525 @default.
- W1978632040 cites W2154866881 @default.
- W1978632040 cites W2156527745 @default.
- W1978632040 cites W2159005573 @default.
- W1978632040 cites W2161852088 @default.
- W1978632040 cites W2787201801 @default.
- W1978632040 cites W2883207965 @default.
- W1978632040 cites W3102070974 @default.
- W1978632040 cites W3125975990 @default.
- W1978632040 cites W4249335611 @default.
- W1978632040 cites W4252125839 @default.
- W1978632040 cites W4253539064 @default.
- W1978632040 doi "https://doi.org/10.1016/j.jcp.2010.11.011" @default.
- W1978632040 hasPublicationYear "2011" @default.
- W1978632040 type Work @default.
- W1978632040 sameAs 1978632040 @default.
- W1978632040 citedByCount "71" @default.
- W1978632040 countsByYear W19786320402012 @default.
- W1978632040 countsByYear W19786320402013 @default.
- W1978632040 countsByYear W19786320402014 @default.
- W1978632040 countsByYear W19786320402015 @default.