Matches in SemOpenAlex for { <https://semopenalex.org/work/W1978665672> ?p ?o ?g. }
Showing items 1 to 89 of
89
with 100 items per page.
- W1978665672 abstract "The hard-core model has received much attention in the past couple of decades as a lattice gas model with hard constraints in statistical physics, a multicast model of calls in communication networks, and as a weighted independent set problem in combinatorics, probability and theoretical computer science. In this model, each independent set I in a graph G is weighted proportionally to λ <sup xmlns:mml=http://www.w3.org/1998/Math/MathML xmlns:xlink=http://www.w3.org/1999/xlink>|I|</sup> , for a positive real parameter λ. For large λ, computing the partition function (namely, the normalizing constant which makes the weighting a probability distribution on a finite graph) on graphs of maximum degree Δ ≥ 3, is a well known computationally challenging problem. More concretely, let λ <sub xmlns:mml=http://www.w3.org/1998/Math/MathML xmlns:xlink=http://www.w3.org/1999/xlink>c</sub> (T <sub xmlns:mml=http://www.w3.org/1998/Math/MathML xmlns:xlink=http://www.w3.org/1999/xlink>Δ</sub> ) denote the critical value for the so-called uniqueness threshold of the hard-core model on the infinite Δ-regular tree; recent breakthrough results of Dror Weitz (2006) and Allan Sly (2010) have identified λ <sub xmlns:mml=http://www.w3.org/1998/Math/MathML xmlns:xlink=http://www.w3.org/1999/xlink>c</sub> (T <sub xmlns:mml=http://www.w3.org/1998/Math/MathML xmlns:xlink=http://www.w3.org/1999/xlink>Δ</sub> ) as a threshold where the hardness of estimating the above partition function undergoes a computational transition. We focus on the well-studied particular case of the square lattice Z <sup xmlns:mml=http://www.w3.org/1998/Math/MathML xmlns:xlink=http://www.w3.org/1999/xlink>2</sup> , and provide a new lower bound for the uniqueness threshold, in particular taking it well above λ <sub xmlns:mml=http://www.w3.org/1998/Math/MathML xmlns:xlink=http://www.w3.org/1999/xlink>c</sub> (T <sub xmlns:mml=http://www.w3.org/1998/Math/MathML xmlns:xlink=http://www.w3.org/1999/xlink>4</sub> ). Our technique refines and builds on the tree of self-avoiding walks approach of Weitz, resulting in a new technical sufficient criterion (of wider applicability) for establishing strong spatial mixing (and hence uniqueness) for the hard-core model. Our new criterion achieves better bounds on strong spatial mixing when the graph has extra structure, improving upon what can be achieved by just using the maximum degree. Applying our technique to Z <sup xmlns:mml=http://www.w3.org/1998/Math/MathML xmlns:xlink=http://www.w3.org/1999/xlink>2</sup> we prove that strong spatial mixing holds for all λ <; 2.3882, improving upon the work of Weitz that held for λ <; 27/16 = 1.6875. Our results imply a fully-polynomial deterministic approximation algorithm for estimating the partition function, as well as rapid mixing of the associated Glauber dynamics to sample from the hard-core distribution." @default.
- W1978665672 created "2016-06-24" @default.
- W1978665672 creator A5035397475 @default.
- W1978665672 creator A5045937072 @default.
- W1978665672 creator A5047220138 @default.
- W1978665672 creator A5051363868 @default.
- W1978665672 creator A5052658531 @default.
- W1978665672 date "2011-10-01" @default.
- W1978665672 modified "2023-09-23" @default.
- W1978665672 title "Improved Mixing Condition on the Grid for Counting and Sampling Independent Sets" @default.
- W1978665672 cites W105541729 @default.
- W1978665672 cites W1600293573 @default.
- W1978665672 cites W1977155350 @default.
- W1978665672 cites W1987143995 @default.
- W1978665672 cites W2004724832 @default.
- W1978665672 cites W2005105063 @default.
- W1978665672 cites W2005897649 @default.
- W1978665672 cites W2011373957 @default.
- W1978665672 cites W2013934974 @default.
- W1978665672 cites W2062822698 @default.
- W1978665672 cites W2067705970 @default.
- W1978665672 cites W2074670256 @default.
- W1978665672 cites W2078000356 @default.
- W1978665672 cites W2086016113 @default.
- W1978665672 cites W2088442384 @default.
- W1978665672 cites W2088847343 @default.
- W1978665672 cites W2094731577 @default.
- W1978665672 cites W2113770815 @default.
- W1978665672 cites W2115080498 @default.
- W1978665672 cites W2115826669 @default.
- W1978665672 cites W2130723959 @default.
- W1978665672 cites W2279676320 @default.
- W1978665672 cites W2963795759 @default.
- W1978665672 cites W3111890340 @default.
- W1978665672 cites W4205240937 @default.
- W1978665672 cites W4232461091 @default.
- W1978665672 cites W4245350735 @default.
- W1978665672 cites W4246291923 @default.
- W1978665672 cites W4252842588 @default.
- W1978665672 cites W4298290503 @default.
- W1978665672 doi "https://doi.org/10.1109/focs.2011.45" @default.
- W1978665672 hasPublicationYear "2011" @default.
- W1978665672 type Work @default.
- W1978665672 sameAs 1978665672 @default.
- W1978665672 citedByCount "6" @default.
- W1978665672 countsByYear W19786656722013 @default.
- W1978665672 countsByYear W19786656722014 @default.
- W1978665672 countsByYear W19786656722015 @default.
- W1978665672 countsByYear W19786656722019 @default.
- W1978665672 crossrefType "proceedings-article" @default.
- W1978665672 hasAuthorship W1978665672A5035397475 @default.
- W1978665672 hasAuthorship W1978665672A5045937072 @default.
- W1978665672 hasAuthorship W1978665672A5047220138 @default.
- W1978665672 hasAuthorship W1978665672A5051363868 @default.
- W1978665672 hasAuthorship W1978665672A5052658531 @default.
- W1978665672 hasBestOaLocation W19786656722 @default.
- W1978665672 hasConcept C11413529 @default.
- W1978665672 hasConcept C114614502 @default.
- W1978665672 hasConcept C118615104 @default.
- W1978665672 hasConcept C134306372 @default.
- W1978665672 hasConcept C2777021972 @default.
- W1978665672 hasConcept C33923547 @default.
- W1978665672 hasConcept C41008148 @default.
- W1978665672 hasConceptScore W1978665672C11413529 @default.
- W1978665672 hasConceptScore W1978665672C114614502 @default.
- W1978665672 hasConceptScore W1978665672C118615104 @default.
- W1978665672 hasConceptScore W1978665672C134306372 @default.
- W1978665672 hasConceptScore W1978665672C2777021972 @default.
- W1978665672 hasConceptScore W1978665672C33923547 @default.
- W1978665672 hasConceptScore W1978665672C41008148 @default.
- W1978665672 hasLocation W19786656721 @default.
- W1978665672 hasLocation W19786656722 @default.
- W1978665672 hasLocation W19786656723 @default.
- W1978665672 hasOpenAccess W1978665672 @default.
- W1978665672 hasPrimaryLocation W19786656721 @default.
- W1978665672 hasRelatedWork W1993453399 @default.
- W1978665672 hasRelatedWork W2014702954 @default.
- W1978665672 hasRelatedWork W2044115466 @default.
- W1978665672 hasRelatedWork W2089766947 @default.
- W1978665672 hasRelatedWork W2110318194 @default.
- W1978665672 hasRelatedWork W2320758659 @default.
- W1978665672 hasRelatedWork W2325254006 @default.
- W1978665672 hasRelatedWork W2350012146 @default.
- W1978665672 hasRelatedWork W2963488231 @default.
- W1978665672 hasRelatedWork W2222154592 @default.
- W1978665672 isParatext "false" @default.
- W1978665672 isRetracted "false" @default.
- W1978665672 magId "1978665672" @default.
- W1978665672 workType "article" @default.