Matches in SemOpenAlex for { <https://semopenalex.org/work/W1978881832> ?p ?o ?g. }
Showing items 1 to 79 of
79
with 100 items per page.
- W1978881832 endingPage "350" @default.
- W1978881832 startingPage "336" @default.
- W1978881832 abstract "Abstract Increasing demand of bandwidth in communication satellites has forced satellite links to be designed in Ku bands and above. But at these frequencies, rain and other tropospheric elements result in large attenuation. To mitigate the tropospheric attenuation of microwave satellite signals above 10 GHz using any standard Fade Mitigation Technique (FMT), it is essential to have a priori knowledge about the level of attenuation. Hence, short-term rain attenuation prediction models play a key role in maintaining the link in which necessary compensation can be applied depending on the early information of attenuation. This paper presents a method of attenuation prediction using Adaptive Artificial Neural Network. Here In situ Learning Algorithm (ILA) has been used to enable the system to track the non-stationary nature of the attenuation. To validate this, Ku Band data, collected at three different sites in India have been used for the purpose of prediction. The performance of the algorithm is determined through the estimation of prediction accuracy by comparing the predicted values with the measured data. Results obtained using the mentioned technique shows considerably good accuracy even up to 20 s of prediction interval with acceptable ratio between the under and over predictions. The prediction performance is evaluated for different prediction intervals. Furthermore the present model is also compared with the persistence model and the relative performance is quantified." @default.
- W1978881832 created "2016-06-24" @default.
- W1978881832 creator A5026813741 @default.
- W1978881832 creator A5027927497 @default.
- W1978881832 creator A5029597393 @default.
- W1978881832 date "2012-01-01" @default.
- W1978881832 modified "2023-10-18" @default.
- W1978881832 title "Attenuation prediction for fade mitigation using neural network with in situ learning algorithm" @default.
- W1978881832 cites W1641267878 @default.
- W1978881832 cites W1994729982 @default.
- W1978881832 cites W2007533078 @default.
- W1978881832 cites W2017779645 @default.
- W1978881832 cites W2024089567 @default.
- W1978881832 cites W2112442042 @default.
- W1978881832 cites W2137568026 @default.
- W1978881832 cites W2164197522 @default.
- W1978881832 cites W2168857710 @default.
- W1978881832 doi "https://doi.org/10.1016/j.asr.2011.10.010" @default.
- W1978881832 hasPublicationYear "2012" @default.
- W1978881832 type Work @default.
- W1978881832 sameAs 1978881832 @default.
- W1978881832 citedByCount "10" @default.
- W1978881832 countsByYear W19788818322017 @default.
- W1978881832 countsByYear W19788818322018 @default.
- W1978881832 countsByYear W19788818322020 @default.
- W1978881832 countsByYear W19788818322021 @default.
- W1978881832 countsByYear W19788818322022 @default.
- W1978881832 countsByYear W19788818322023 @default.
- W1978881832 crossrefType "journal-article" @default.
- W1978881832 hasAuthorship W1978881832A5026813741 @default.
- W1978881832 hasAuthorship W1978881832A5027927497 @default.
- W1978881832 hasAuthorship W1978881832A5029597393 @default.
- W1978881832 hasConcept C111919701 @default.
- W1978881832 hasConcept C11413529 @default.
- W1978881832 hasConcept C119857082 @default.
- W1978881832 hasConcept C120665830 @default.
- W1978881832 hasConcept C121332964 @default.
- W1978881832 hasConcept C127313418 @default.
- W1978881832 hasConcept C153294291 @default.
- W1978881832 hasConcept C184652730 @default.
- W1978881832 hasConcept C2777822432 @default.
- W1978881832 hasConcept C2778518048 @default.
- W1978881832 hasConcept C41008148 @default.
- W1978881832 hasConcept C50644808 @default.
- W1978881832 hasConcept C62649853 @default.
- W1978881832 hasConceptScore W1978881832C111919701 @default.
- W1978881832 hasConceptScore W1978881832C11413529 @default.
- W1978881832 hasConceptScore W1978881832C119857082 @default.
- W1978881832 hasConceptScore W1978881832C120665830 @default.
- W1978881832 hasConceptScore W1978881832C121332964 @default.
- W1978881832 hasConceptScore W1978881832C127313418 @default.
- W1978881832 hasConceptScore W1978881832C153294291 @default.
- W1978881832 hasConceptScore W1978881832C184652730 @default.
- W1978881832 hasConceptScore W1978881832C2777822432 @default.
- W1978881832 hasConceptScore W1978881832C2778518048 @default.
- W1978881832 hasConceptScore W1978881832C41008148 @default.
- W1978881832 hasConceptScore W1978881832C50644808 @default.
- W1978881832 hasConceptScore W1978881832C62649853 @default.
- W1978881832 hasIssue "2" @default.
- W1978881832 hasLocation W19788818321 @default.
- W1978881832 hasOpenAccess W1978881832 @default.
- W1978881832 hasPrimaryLocation W19788818321 @default.
- W1978881832 hasRelatedWork W1993527903 @default.
- W1978881832 hasRelatedWork W2007533078 @default.
- W1978881832 hasRelatedWork W2081499430 @default.
- W1978881832 hasRelatedWork W2098131173 @default.
- W1978881832 hasRelatedWork W2116203351 @default.
- W1978881832 hasRelatedWork W2148251183 @default.
- W1978881832 hasRelatedWork W2547718791 @default.
- W1978881832 hasRelatedWork W2748952813 @default.
- W1978881832 hasRelatedWork W2972984446 @default.
- W1978881832 hasRelatedWork W3008669318 @default.
- W1978881832 hasVolume "49" @default.
- W1978881832 isParatext "false" @default.
- W1978881832 isRetracted "false" @default.
- W1978881832 magId "1978881832" @default.
- W1978881832 workType "article" @default.