Matches in SemOpenAlex for { <https://semopenalex.org/work/W1978897095> ?p ?o ?g. }
- W1978897095 endingPage "21338" @default.
- W1978897095 startingPage "21331" @default.
- W1978897095 abstract "Transcriptional activation of target genes by the human progesterone receptor is thought to involve direct or indirect protein-protein interactions between the progesterone receptor and general transcription factors. A key role in transcription plays the general transcription factor TFIID, a multiprotein complex consisting of the TATA-binding protein and several tightly associated factors (TAFs). TAFs have been shown to be required for activated transcription and are, thus, potential targets of activator proteins. Using in vitro interaction assays, we could identify specific interactions between the progesterone receptor and the TATA-binding protein-associated factor dTAFII110. The dTAFII110 domain responsible for the interaction is distinct from that reported to suffice for binding to Sp1. Somewhat surprisingly, deletion analysis indicated that the previously identified activation functions 1 and 2 of the progesterone receptor are not required for this interaction but pointed to an important role of the DNA binding domain. In cotransfection experiments and an in vitro transcription assay, the DNA binding domain of the progesterone receptor displayed significant activation potential. These findings, taken together, suggest that an interaction between the progesterone receptor and TAFII110 may represent an important step in the mechanism of activation. Transcriptional activation of target genes by the human progesterone receptor is thought to involve direct or indirect protein-protein interactions between the progesterone receptor and general transcription factors. A key role in transcription plays the general transcription factor TFIID, a multiprotein complex consisting of the TATA-binding protein and several tightly associated factors (TAFs). TAFs have been shown to be required for activated transcription and are, thus, potential targets of activator proteins. Using in vitro interaction assays, we could identify specific interactions between the progesterone receptor and the TATA-binding protein-associated factor dTAFII110. The dTAFII110 domain responsible for the interaction is distinct from that reported to suffice for binding to Sp1. Somewhat surprisingly, deletion analysis indicated that the previously identified activation functions 1 and 2 of the progesterone receptor are not required for this interaction but pointed to an important role of the DNA binding domain. In cotransfection experiments and an in vitro transcription assay, the DNA binding domain of the progesterone receptor displayed significant activation potential. These findings, taken together, suggest that an interaction between the progesterone receptor and TAFII110 may represent an important step in the mechanism of activation. INTRODUCTIONIn eukaryotes, at least seven basal transcription factors (TFIIA, TFIIB, TFIID, TFIIE, TFIIF, TFIIH, and TFIIJ) are required for basal levels of transcription at promoters by RNA polymerase II in vitro (reviewed in (1Zawel L. Reinberg D. Curr. Opin. Cell Biol. 1992; 4: 488-495Crossref PubMed Scopus (143) Google Scholar)). In mammalian systems, these factors assemble into functional initiation complexes in a highly ordered, stepwise fashion beginning with the binding of TFIID to the TATA box (1Zawel L. Reinberg D. Curr. Opin. Cell Biol. 1992; 4: 488-495Crossref PubMed Scopus (143) Google Scholar, 2Buratowski S. Hahn S. Guarente L. Sharp P.A. Cell. 1989; 56: 549-561Abstract Full Text PDF PubMed Scopus (675) Google Scholar, 3Tjian R. Maniatis T. Cell. 1994; 77: 5-8Abstract Full Text PDF PubMed Scopus (953) Google Scholar), while in yeast a number of factors seem to be brought in as a preassembled RNA polymerase II holoenzyme complex(4Koleske A.J. Young R.A. Nature. 1994; 368: 466-469Crossref PubMed Scopus (530) Google Scholar). Sequence-specific activators that bind to specific regulatory elements within distal promoter regions or enhancers are capable of stimulating the rate of transcription initiation. Although the precise mechanism is presently unknown, there is increasing support for models proposing that protein-protein interactions between activators and basal transcription factors play a decisive role in this process(5Lewin B. Cell. 1990; 61: 1161-1164Abstract Full Text PDF PubMed Scopus (227) Google Scholar). Such interactions might help to recruit these basal transcription factors or the preassembled RNA polymerase II holoenzyme complex to the TATA box, stabilize intermediates in the assembly of the initiation complex, or activate certain components by inducing conformational changes.Biochemical and molecular characterization of TFIID has shown that it is a multi-subunit complex consisting of the TATA-binding protein (TBP) 1The abbreviations used are: TBPTATA-binding proteinTAFTBP-associated factorPRprogesterone receptorPREprogesterone response elementsDBDDNA binding domainhPRhuman progesterone receptorCATchloramphenicol acetyltransferaseaaamino acid(s)PAGEpolyacrylamide gel electrophoresisPCRpolymerase chain reaction. and a number of TBP-associated factors (TAFs)(6Dynlacht B.D. Hoey T. Tjian R. Cell. 1991; 66: 563-576Abstract Full Text PDF PubMed Scopus (483) Google Scholar, 7Tanese N. Pugh B.F. Tjian R. Genes & Dev. 1991; 5: 2212-2224Crossref PubMed Scopus (241) Google Scholar, 8Zhou Q. Lieberman P.M. Boyer T.G. Berk A.J. Genes & Dev. 1992; 6: 1964-1974Crossref PubMed Scopus (288) Google Scholar), ranging from 20 to 250 kDa in size. In cell-free transcription systems reconstituted from partially purified factors, recombinant TBP is able to support basal transcription of TATA-only promoters(9Kao C.C. Lieberman P.M. Schmidt M.C. Zhou Q. Pei R. Berk A.J. Science. 1990; 248: 1646-1650Crossref PubMed Scopus (224) Google Scholar, 10Peterson M.G. Tanese N. Pugh B.F. Tjian R. Science. 1990; 248: 1625-1630Crossref PubMed Scopus (320) Google Scholar). However, unlike TFIID, TBP fails to mediate transcriptional stimulation by various activators, indicating that TAFs are required for this process(8Zhou Q. Lieberman P.M. Boyer T.G. Berk A.J. Genes & Dev. 1992; 6: 1964-1974Crossref PubMed Scopus (288) Google Scholar, 10Peterson M.G. Tanese N. Pugh B.F. Tjian R. Science. 1990; 248: 1625-1630Crossref PubMed Scopus (320) Google Scholar). Consequently, a model has been proposed, suggesting that different activators might interact with different TAFs in the TFIID complex(3Tjian R. Maniatis T. Cell. 1994; 77: 5-8Abstract Full Text PDF PubMed Scopus (953) Google Scholar, 7Tanese N. Pugh B.F. Tjian R. Genes & Dev. 1991; 5: 2212-2224Crossref PubMed Scopus (241) Google Scholar). Indeed, interactions with subunits of Drosophila(11Ferreri K. Gill G. Montminy M. Proc. Natl. Acad. Sci. U. S. A. 1994; 91: 1210-1213Crossref PubMed Scopus (163) Google Scholar, 12Hoey T. Weinzierl R.O.J. Gill G. Chen J.-L. Dynlacht B.D. Tjian R. Cell. 1993; 72: 247-260Abstract Full Text PDF PubMed Scopus (474) Google Scholar, 13Goodrich J.A. Hoey T. Thut C.J. Admon A. Tjian R. Cell. 1993; 75: 519-530Abstract Full Text PDF PubMed Scopus (351) Google Scholar, 14Chen J.-L. Attardi L.D. Verrijzer C.P. Yokomori K. Tjian R. Cell. 1994; 79: 93-105Abstract Full Text PDF PubMed Scopus (328) Google Scholar, 15Thut C.J. Chen J.-L. Klemm R. Tjian R. Science. 1995; 267: 100-104Crossref PubMed Scopus (405) Google Scholar, 16Tong X. Wang F. Thut C.J. Kieff E. J. Virol. 1995; 69: 585-588Crossref PubMed Google Scholar) and human (15Thut C.J. Chen J.-L. Klemm R. Tjian R. Science. 1995; 267: 100-104Crossref PubMed Scopus (405) Google Scholar, 17Jacq X. Brou C. Lutz Y. Davidson I. Chambon P. Tora L. Cell. 1994; 79: 107-117Abstract Full Text PDF PubMed Scopus (344) Google Scholar, 18Chiang C.-M. Roeder R.G. Science. 1995; 267: 531-536Crossref PubMed Scopus (352) Google Scholar) TFIID complexes have been demonstrated for a growing number of transcription activators.The progesterone receptor (PR) is a ligand-inducible transactivator that belongs to the superfamily of nuclear receptors(19Evans R.M. Science. 1988; 240: 889-895Crossref PubMed Scopus (6287) Google Scholar, 20Green S. Chambon P. Nature. 1986; 324: 615-617Crossref PubMed Scopus (221) Google Scholar, 21Tsai M.-J. O'Malley B.W. Annu. Rev. Biochem. 1994; 63: 451-486Crossref PubMed Scopus (2675) Google Scholar). Activated PR facilitates the formation of initiation complexes through binding to progesterone response elements (PREs) located in the promoter region of target genes(22Klein-Hitpass L. Tsai S.Y. Weigel N.L. Allan G.F. Riley D. Rodriguez R. Schrader W.T. Tsai M.-J. O'Malley B.W. Cell. 1990; 60: 247-257Abstract Full Text PDF PubMed Scopus (147) Google Scholar). Molecular analysis has shown that PR, like other transcription activators, consists of separable domains responsible for DNA binding (DBD) and transcriptional activation(23Gronemeyer H. Annu. Rev. Genet. 1991; 25: 89-123Crossref PubMed Scopus (327) Google Scholar). The amino-terminal activation function (AF-1) is constitutively active, whereas the activation function located within the carboxyl-terminal part (AF-2) requires hormone for its activity(24Bocquel M.T. Kumar V. Stricker C. Chambon P. Gronemeyer H. Nucleic Acids Res. 1989; 17: 2581-2595Crossref PubMed Scopus (227) Google Scholar, 25Meyer M.-E. Pornon A. Ji J. Bocquel M.-T. Chambon P. Gronemeyer H. EMBO J. 1990; 9: 3923-3932Crossref PubMed Scopus (293) Google Scholar).In the present study, possible interactions of hPR with a subunit of the TFIID complex were examined by protein-protein interaction assays. Our results show that the 110-kDa subunit of Drosophila TFIID (dTAFII110) is specifically bound by hPR in vitro and that this interaction is mediated by specific domains of both proteins. Transfection studies and in vitro transcription experiments revealed that the part of hPR which mediates the interaction contains a previously unidentified activation function.DISCUSSIONTo detect the interactions between hPR and dTAFII110 in vitro and to define the domains involved, we used partially purified hPR proteins bound to a Ni-NTA matrix and in vitro synthesized dTAFII110. In this assay, EtBr caused a clear inhibition (Fig. 2), indicating that DNA is somehow involved. However, since dTAFII110 alone does not stably bind to DNA (Fig. 1A, lane 5), we exclude the possibility that the association of dTAFII110 with hPR loaded beads is simply due to capturing of DNA molecules containing bound dTAFII110 through nonspecific interactions with the DNA binding domain of hPR. Furthermore, we are convinced that the binding of dTAFII110 to the Ni-NTA matrix is due to an interaction with the hPR and not mediated by a natural poly-histidine containing protein, for example TFIIA(41DeJong J. Roeder R.G. Genes & Dev. 1993; 7: 2220-2234Crossref PubMed Scopus (89) Google Scholar, 42Ma D. Watanabe H. Mermelstein F. Admon A. Oguri K. Sun X. Wada T. Imai T. Shiroya T. Reinberg T. Handa H. Genes & Dev. 1993; 7: 2246-2257Crossref PubMed Scopus (76) Google Scholar), either present in the reticulocyte lysate or copurified with the PR proteins from infected Sf21 cells for the following reasons. First, we were able to detect hPR-dependent dTAFII110 binding also in a different assay, in which the hPR was bound to biotinylated DNA fragments immobilized to streptavidin beads (Fig. 1A). Second, the PR dependence of dTAFII110 binding to Ni-NTA-agarose beads (Fig. 2A, 4, 5, and 6) rules out the possibility that dTAFII110 is directly bound by a natural poly-histidine containing protein present in the reticulocyte lysate used to synthesize the labeled dTAFII110 proteins. Third, the negative results obtained with two different hPR mutants (MH6-ABΔcore, MH6-BΔcore, Fig. 4B), purified from infected Sf21 cells by our standard procedure, strongly argue against copurified poly-histidine containing Spodoptora proteins as being responsible for dTAFII110 binding. Furthermore, in a chromatographic analysis of a MH6-C preparation on a Superose 12 gel filtration column, only one peak of binding activity was observed, which perfectly coincided with the single MH6-C polypeptide peak at 13 kDa (data not shown). However, since the dTAFII110 proteins used in this study were assayed without further purification, we cannot exclude a model in which the hPR-dTAFII110 interaction is mediated or stabilized by an additional protein(s) present in the translation lysate. Highly purified recombinant dTAFII110 will be required to investigate this issue.Prior to this study, two activators have been shown to interact with dTAFII110, namely Sp1 and CREB(11Ferreri K. Gill G. Montminy M. Proc. Natl. Acad. Sci. U. S. A. 1994; 91: 1210-1213Crossref PubMed Scopus (163) Google Scholar, 12Hoey T. Weinzierl R.O.J. Gill G. Chen J.-L. Dynlacht B.D. Tjian R. Cell. 1993; 72: 247-260Abstract Full Text PDF PubMed Scopus (474) Google Scholar, 43Gill G. Pascal E. Tseng Z.H. Tjian R. Proc. Natl. Acad. Sci. U. S. A. 1994; 91: 192-196Crossref PubMed Scopus (469) Google Scholar). Although the interaction between CREB and dTAFII110 has not been mapped to a particular region of dTAFII110(11Ferreri K. Gill G. Montminy M. Proc. Natl. Acad. Sci. U. S. A. 1994; 91: 1210-1213Crossref PubMed Scopus (163) Google Scholar), sequence similarities of CREB and Sp1 activation domains suggest that these activators may target the same domain of dTAFII110(43Gill G. Pascal E. Tseng Z.H. Tjian R. Proc. Natl. Acad. Sci. U. S. A. 1994; 91: 192-196Crossref PubMed Scopus (469) Google Scholar). As indicated in Fig. 5A, work of Tjian's group (12Hoey T. Weinzierl R.O.J. Gill G. Chen J.-L. Dynlacht B.D. Tjian R. Cell. 1993; 72: 247-260Abstract Full Text PDF PubMed Scopus (474) Google Scholar) has shown that the amino-terminal 308 amino acids of dTAFII110 suffice for interaction with Sp1. In contrast, our experiments establish that the interaction with hPR does not involve the amino-terminal region but depends on a more carboxyl-terminal nonoverlapping domain of dTAFII110. Together with the results of the Sp1-dTAFII110 interaction, this study identifies dTAFII110 as the first TAF containing at least two distinct interaction surfaces mediating contacts with activators. Due to the multiplicity of activators and the limited number of TAFs, we expect that multiple interaction domains within TAF polypeptides will turn out as a more general feature of these important molecules.Work of the groups of Tjian and Roeder (44Kokubo T. Gong D.-W. Roeder R.G. Horikoshi M. Nakatani Y. Proc. Natl. Acad. Sci. U. S. A. 1993; 90: 5896-5900Crossref PubMed Scopus (25) Google Scholar, 45Kokubo T. Gong D.-W. Wootton J.C. Horikoshi M. Roeder R.G. Nakatani Y. Nature. 1994; 367: 484-487Crossref PubMed Scopus (105) Google Scholar, 46Kokubo T. Gong D.-W. Yamashita S. Takada R. Roeder R.G. Horikoshi M. Nakatani Y. Mol. Cell. Biol. 1993; 13: 7859-7863Crossref PubMed Scopus (38) Google Scholar, 47Weinzierl R.O.J. Dynlacht B.D. Tjian R. Nature. 1993; 362: 511-517Crossref PubMed Scopus (143) Google Scholar, 48Yokimori K. Chen J.-L. Admon A. Zhou S. Tjian R. Genes & Dev. 1993; 7: 2587-2597Crossref PubMed Scopus (47) Google Scholar) has indicated that dTAFII110 makes additional contacts with several other TAFs of the TFIID complex. While most TAF-TAF interactions have not been mapped to particular domains of dTAFII110, Yokimori et al.(48Yokimori K. Chen J.-L. Admon A. Zhou S. Tjian R. Genes & Dev. 1993; 7: 2587-2597Crossref PubMed Scopus (47) Google Scholar) demonstrated that dTAFII30α binds to sequences in the carboxyl-terminal part of dTAFII110 (aa 572-921). In contrast to hPR, dTAFII30α binding was absolutely dependent on the very carboxyl-terminal end of dTAFII110. Therefore, the sequence requirements for binding of hPR and dTAFII30α to dTAFII110 are clearly different.Perhaps the most surprising result of this study is that an hPR construct (MH6-C) containing only 18 amino acids of AF-1 (aa 538-555) and the DBD (aa 556-639) is sufficient for interaction with dTAFII110. Since two overlapping mutants (MH6-ABΔcore, MH6-BΔcore) containing these 18 amino acids of AF-1 are not sufficient for binding to dTAFII110, the interaction motif is at least partly contained within the DBD of hPR. Another example for an interaction between a DBD and a TAF was recently described by Chiang and Roeder (18Chiang C.-M. Roeder R.G. Science. 1995; 267: 531-536Crossref PubMed Scopus (352) Google Scholar), who demonstrated that the DBD of Sp1 binds to a 55-kDa subunit of human TFIID in vitro. Our results thus support the concept that TAFs can interact with multiple distinct domains of transactivators(18Chiang C.-M. Roeder R.G. Science. 1995; 267: 531-536Crossref PubMed Scopus (352) Google Scholar).By cotransfection and in vitro transcription experiments, we were able to demonstrate that the DBD of hPR, which has not been tested for transactivation potential in the studies defining AF-1 and AF-2 of hPR(24Bocquel M.T. Kumar V. Stricker C. Chambon P. Gronemeyer H. Nucleic Acids Res. 1989; 17: 2581-2595Crossref PubMed Scopus (227) Google Scholar, 25Meyer M.-E. Pornon A. Ji J. Bocquel M.-T. Chambon P. Gronemeyer H. EMBO J. 1990; 9: 3923-3932Crossref PubMed Scopus (293) Google Scholar, 38Meyer M.-E. Quirin-Stricker C. Lerouge T. Bocquel M.-T. Gronemeyer H. J. Biol. Chem. 1992; 267: 10882-10887Abstract Full Text PDF PubMed Google Scholar), is able to mediate transcriptional activation through PREs located in front of a minimal promoter, albeit with reduced efficiency compared to wild type hPR (Fig. 7). The presence of a previously unidentified activation function within the hPR domain mediating the interaction with dTAFII110 in vitro clearly supports our notion that this interaction reflects an important step in the mechanism of transactivation by hPR.Interestingly, mutational analysis of the rat and human glucocorticoid receptors (49Hollenberg S.M. Giguere V. Segui P. Evans R.M. Cell. 1987; 49: 39-46Abstract Full Text PDF PubMed Scopus (331) Google Scholar, 50Miesfeld R. Godowski P.J. Maler B.A. Yamamoto K.R. Science. 1987; 236: 423-427Crossref PubMed Scopus (164) Google Scholar) and the Xenopus estrogen receptor (51Nardulli A.M. Lew D. Erijman L. Shapiro D.J. J. Biol. Chem. 1991; 266: 24070-24076Abstract Full Text PDF PubMed Google Scholar) has also revealed the presence of a transactivation function within the respective DBDs. While activation by the glucocorticoid receptor DBDs pointed to a role of a basic region immediately following the second zinc finger(49Hollenberg S.M. Giguere V. Segui P. Evans R.M. Cell. 1987; 49: 39-46Abstract Full Text PDF PubMed Scopus (331) Google Scholar, 50Miesfeld R. Godowski P.J. Maler B.A. Yamamoto K.R. Science. 1987; 236: 423-427Crossref PubMed Scopus (164) Google Scholar), activation by the DBD of the estrogen receptor may be mediated by a short acidic tract at the carboxyl terminus of the DBD(51Nardulli A.M. Lew D. Erijman L. Shapiro D.J. J. Biol. Chem. 1991; 266: 24070-24076Abstract Full Text PDF PubMed Google Scholar). Thus, the presence of an activation function located in the DBD might be a more general feature of steroid receptors.Analogous to the studies that identified interactions of Sp1 and CREB with dTAFII110(11Ferreri K. Gill G. Montminy M. Proc. Natl. Acad. Sci. U. S. A. 1994; 91: 1210-1213Crossref PubMed Scopus (163) Google Scholar, 12Hoey T. Weinzierl R.O.J. Gill G. Chen J.-L. Dynlacht B.D. Tjian R. Cell. 1993; 72: 247-260Abstract Full Text PDF PubMed Scopus (474) Google Scholar), we have investigated interactions between a mammalian activator and a Drosophila TAF, i.e. between proteins from evolutionary widely separated organisms. Since the cDNA encoding the human homologue of dTAFII110 is not available yet, we have not been able to prove that it also interacts with hPR. However, the part of dTAFII110 sufficient for binding to hPR includes regions with extensive sequence similarity to the human homologue hTAFII130. 3R. Tjian and N. Tanese, personal communication. Our results thus raise the possibility that this part of TAFII110 contains a conserved motif mediating interactions with the highly conserved DBDs of members of the steroid receptor superfamily.Ing et al.(52Ing N.H. Beekman J.M. Tsai S.Y. Tsai M.-J. O'Malley B.W. J. Biol. Chem. 1992; 267: 17617-17623Abstract Full Text PDF PubMed Google Scholar) have reported that hPR and a truncated chicken PR synthesized in reticulocyte lysate and E. coli, respectively, interact specifically with the basal transcription factor TFIIB. In contrast, using baculovirus-expressed hPR that is transcriptionally active (Fig. 7B), we have been unable to detect association of hPR and TFIIB (Fig. 1B). It remains to be seen whether the different sources of the receptors or experimental differences may account for the discrepancy between the two sets of data. Interestingly, the region required for interaction with TFIIB has been mapped to a 168-amino acid fragment of chicken PR, which includes the highly conserved DBD(52Ing N.H. Beekman J.M. Tsai S.Y. Tsai M.-J. O'Malley B.W. J. Biol. Chem. 1992; 267: 17617-17623Abstract Full Text PDF PubMed Google Scholar). Since we have shown that the corresponding region of hPR mediates interaction with dTAFII110, it is feasible that the DBDs of PRs are not only involved in the formation of receptor dimers(21Tsai M.-J. O'Malley B.W. Annu. Rev. Biochem. 1994; 63: 451-486Crossref PubMed Scopus (2675) Google Scholar, 25Meyer M.-E. Pornon A. Ji J. Bocquel M.-T. Chambon P. Gronemeyer H. EMBO J. 1990; 9: 3923-3932Crossref PubMed Scopus (293) Google Scholar), in the recognition of the PREs(21Tsai M.-J. O'Malley B.W. Annu. Rev. Biochem. 1994; 63: 451-486Crossref PubMed Scopus (2675) Google Scholar), and in interactions with a TAF, but also in protein-protein interactions with TFIIB(52Ing N.H. Beekman J.M. Tsai S.Y. Tsai M.-J. O'Malley B.W. J. Biol. Chem. 1992; 267: 17617-17623Abstract Full Text PDF PubMed Google Scholar). Since the DBD of hPR accounts only for a small part of the overall transactivation potential of hPR (Fig. 7), it is likely that hPR contacts additional, yet unidentified components of the initiation complex, possibly through AF-1 and AF-2. Multiple interactions with members of the transcription machinery have been proposed for a growing number of transcriptional activators, including VP16 and the glucocorticoid receptor(13Goodrich J.A. Hoey T. Thut C.J. Admon A. Tjian R. Cell. 1993; 75: 519-530Abstract Full Text PDF PubMed Scopus (351) Google Scholar, 53McEwan I.J. Almlöf T. Wikström A.-C. Dahlman-Wright K. Wright A.P.H. Gustafsson J.-Å. J. Biol. Chem. 1994; 269: 25629-25636Abstract Full Text PDF PubMed Google Scholar). Such a multiplicity of protein-protein contacts may enable the hPR to affect subsequent rate-limiting steps in the process of preinitiation complex formation and contribute to the highly synergistic activation observed with multiple PRs bound to closely adjacent PREs. INTRODUCTIONIn eukaryotes, at least seven basal transcription factors (TFIIA, TFIIB, TFIID, TFIIE, TFIIF, TFIIH, and TFIIJ) are required for basal levels of transcription at promoters by RNA polymerase II in vitro (reviewed in (1Zawel L. Reinberg D. Curr. Opin. Cell Biol. 1992; 4: 488-495Crossref PubMed Scopus (143) Google Scholar)). In mammalian systems, these factors assemble into functional initiation complexes in a highly ordered, stepwise fashion beginning with the binding of TFIID to the TATA box (1Zawel L. Reinberg D. Curr. Opin. Cell Biol. 1992; 4: 488-495Crossref PubMed Scopus (143) Google Scholar, 2Buratowski S. Hahn S. Guarente L. Sharp P.A. Cell. 1989; 56: 549-561Abstract Full Text PDF PubMed Scopus (675) Google Scholar, 3Tjian R. Maniatis T. Cell. 1994; 77: 5-8Abstract Full Text PDF PubMed Scopus (953) Google Scholar), while in yeast a number of factors seem to be brought in as a preassembled RNA polymerase II holoenzyme complex(4Koleske A.J. Young R.A. Nature. 1994; 368: 466-469Crossref PubMed Scopus (530) Google Scholar). Sequence-specific activators that bind to specific regulatory elements within distal promoter regions or enhancers are capable of stimulating the rate of transcription initiation. Although the precise mechanism is presently unknown, there is increasing support for models proposing that protein-protein interactions between activators and basal transcription factors play a decisive role in this process(5Lewin B. Cell. 1990; 61: 1161-1164Abstract Full Text PDF PubMed Scopus (227) Google Scholar). Such interactions might help to recruit these basal transcription factors or the preassembled RNA polymerase II holoenzyme complex to the TATA box, stabilize intermediates in the assembly of the initiation complex, or activate certain components by inducing conformational changes.Biochemical and molecular characterization of TFIID has shown that it is a multi-subunit complex consisting of the TATA-binding protein (TBP) 1The abbreviations used are: TBPTATA-binding proteinTAFTBP-associated factorPRprogesterone receptorPREprogesterone response elementsDBDDNA binding domainhPRhuman progesterone receptorCATchloramphenicol acetyltransferaseaaamino acid(s)PAGEpolyacrylamide gel electrophoresisPCRpolymerase chain reaction. and a number of TBP-associated factors (TAFs)(6Dynlacht B.D. Hoey T. Tjian R. Cell. 1991; 66: 563-576Abstract Full Text PDF PubMed Scopus (483) Google Scholar, 7Tanese N. Pugh B.F. Tjian R. Genes & Dev. 1991; 5: 2212-2224Crossref PubMed Scopus (241) Google Scholar, 8Zhou Q. Lieberman P.M. Boyer T.G. Berk A.J. Genes & Dev. 1992; 6: 1964-1974Crossref PubMed Scopus (288) Google Scholar), ranging from 20 to 250 kDa in size. In cell-free transcription systems reconstituted from partially purified factors, recombinant TBP is able to support basal transcription of TATA-only promoters(9Kao C.C. Lieberman P.M. Schmidt M.C. Zhou Q. Pei R. Berk A.J. Science. 1990; 248: 1646-1650Crossref PubMed Scopus (224) Google Scholar, 10Peterson M.G. Tanese N. Pugh B.F. Tjian R. Science. 1990; 248: 1625-1630Crossref PubMed Scopus (320) Google Scholar). However, unlike TFIID, TBP fails to mediate transcriptional stimulation by various activators, indicating that TAFs are required for this process(8Zhou Q. Lieberman P.M. Boyer T.G. Berk A.J. Genes & Dev. 1992; 6: 1964-1974Crossref PubMed Scopus (288) Google Scholar, 10Peterson M.G. Tanese N. Pugh B.F. Tjian R. Science. 1990; 248: 1625-1630Crossref PubMed Scopus (320) Google Scholar). Consequently, a model has been proposed, suggesting that different activators might interact with different TAFs in the TFIID complex(3Tjian R. Maniatis T. Cell. 1994; 77: 5-8Abstract Full Text PDF PubMed Scopus (953) Google Scholar, 7Tanese N. Pugh B.F. Tjian R. Genes & Dev. 1991; 5: 2212-2224Crossref PubMed Scopus (241) Google Scholar). Indeed, interactions with subunits of Drosophila(11Ferreri K. Gill G. Montminy M. Proc. Natl. Acad. Sci. U. S. A. 1994; 91: 1210-1213Crossref PubMed Scopus (163) Google Scholar, 12Hoey T. Weinzierl R.O.J. Gill G. Chen J.-L. Dynlacht B.D. Tjian R. Cell. 1993; 72: 247-260Abstract Full Text PDF PubMed Scopus (474) Google Scholar, 13Goodrich J.A. Hoey T. Thut C.J. Admon A. Tjian R. Cell. 1993; 75: 519-530Abstract Full Text PDF PubMed Scopus (351) Google Scholar, 14Chen J.-L. Attardi L.D. Verrijzer C.P. Yokomori K. Tjian R. Cell. 1994; 79: 93-105Abstract Full Text PDF PubMed Scopus (328) Google Scholar, 15Thut C.J. Chen J.-L. Klemm R. Tjian R. Science. 1995; 267: 100-104Crossref PubMed Scopus (405) Google Scholar, 16Tong X. Wang F. Thut C.J. Kieff E. J. Virol. 1995; 69: 585-588Crossref PubMed Google Scholar) and human (15Thut C.J. Chen J.-L. Klemm R. Tjian R. Science. 1995; 267: 100-104Crossref PubMed Scopus (405) Google Scholar, 17Jacq X. Brou C. Lutz Y. Davidson I. Chambon P. Tora L. Cell. 1994; 79: 107-117Abstract Full Text PDF PubMed Scopus (344) Google Scholar, 18Chiang C.-M. Roeder R.G. Science. 1995; 267: 531-536Crossref PubMed Scopus (352) Google Scholar) TFIID complexes have been demonstrated for a growing number of transcription activators.The progesterone receptor (PR) is a ligand-inducible transactivator that belongs to the superfamily of nuclear receptors(19Evans R.M. Science. 1988; 240: 889-895Crossref PubMed Scopus (6287) Google Scholar, 20Green S. Chambon P. Nature. 1986; 324: 615-617Crossref PubMed Scopus (221) Google Scholar, 21Tsai M.-J. O'Malley B.W. Annu. Rev. Biochem. 1994; 63: 451-486Crossref PubMed Scopus (2675) Google Scholar). Activated PR facilitates the formation of initiation complexes through binding to progesterone response elements (PREs) located in the promoter region of target genes(22Klein-Hitpass L. Tsai S.Y. Weigel N.L. Allan G.F. Riley D. Rodriguez R. Schrader W.T. Tsai M.-J. O'Malley B.W. Cell. 1990; 60: 247-257Abstract Full Text PDF PubMed Scopus (147) Google Scholar). Molecular analysis has shown that PR, like other transcription activators, consists of separable domains responsible for DNA binding (DBD) and transcriptional activation(23Gronemeyer H. Annu. Rev. Genet. 1991; 25: 89-123Crossref PubMed Scopus (327) Google Scholar). The amino-terminal activation function (AF-1) is constitutively active, whereas the activation function located within the carboxyl-terminal part (AF-2) requires hormone for its activity(24Bocquel M.T. Kumar V. Stricker C. Chambon P. Gronemeyer H. Nucleic Acids Res. 1989; 17: 2581-2595Crossref PubMed Scopus (227) Google Scholar, 25Meyer M.-E. Pornon A. Ji J. Bocquel M.-T. Chambon P. Gronemeyer H. EMBO J. 1990; 9: 3923-3932Crossref PubMed Scopus (293) Google Scholar).In the present study, possible interactions of hPR with a subunit of the TFIID complex were examined by protein-protein interaction assays. Our results show that the 110-kDa subunit of Drosophila TFIID (dTAFII110) is specifically bound by hPR in vitro and that this interaction is mediated by specific domains of both proteins. Transfection studies and in vitro transcription experiments revealed that the part of hPR which mediates the interaction contains a previously unidentified activation function." @default.
- W1978897095 created "2016-06-24" @default.
- W1978897095 creator A5023219655 @default.
- W1978897095 creator A5029499905 @default.
- W1978897095 creator A5032901717 @default.
- W1978897095 creator A5053308845 @default.
- W1978897095 creator A5084479067 @default.
- W1978897095 date "1995-09-01" @default.
- W1978897095 modified "2023-10-18" @default.
- W1978897095 title "Identification of a Transactivation Function in the Progesterone Receptor That Interacts with the TAFII110 Subunit of the TFIID Complex" @default.
- W1978897095 cites W1486980795 @default.
- W1978897095 cites W1489022720 @default.
- W1978897095 cites W1512996606 @default.
- W1978897095 cites W1569704074 @default.
- W1978897095 cites W1590197184 @default.
- W1978897095 cites W1965652496 @default.
- W1978897095 cites W1972091959 @default.
- W1978897095 cites W1973912514 @default.
- W1978897095 cites W1977694232 @default.
- W1978897095 cites W1981686096 @default.
- W1978897095 cites W1981814275 @default.
- W1978897095 cites W1982685209 @default.
- W1978897095 cites W1983166017 @default.
- W1978897095 cites W1986473194 @default.
- W1978897095 cites W1998671864 @default.
- W1978897095 cites W1998861020 @default.
- W1978897095 cites W1999745373 @default.
- W1978897095 cites W2000573687 @default.
- W1978897095 cites W2002357201 @default.
- W1978897095 cites W2006362317 @default.
- W1978897095 cites W2006424562 @default.
- W1978897095 cites W2008822380 @default.
- W1978897095 cites W2009558707 @default.
- W1978897095 cites W2026114062 @default.
- W1978897095 cites W2030315227 @default.
- W1978897095 cites W2038897119 @default.
- W1978897095 cites W2042688292 @default.
- W1978897095 cites W2044865169 @default.
- W1978897095 cites W2045274476 @default.
- W1978897095 cites W2062181306 @default.
- W1978897095 cites W2063683246 @default.
- W1978897095 cites W2064194464 @default.
- W1978897095 cites W2079557259 @default.
- W1978897095 cites W2085124463 @default.
- W1978897095 cites W2097641673 @default.
- W1978897095 cites W2107624922 @default.
- W1978897095 cites W2120552994 @default.
- W1978897095 cites W2125695596 @default.
- W1978897095 cites W2128840922 @default.
- W1978897095 cites W2135564507 @default.
- W1978897095 cites W2136690570 @default.
- W1978897095 cites W2139462257 @default.
- W1978897095 cites W2140134113 @default.
- W1978897095 cites W2285547726 @default.
- W1978897095 cites W4246505086 @default.
- W1978897095 cites W74071586 @default.
- W1978897095 cites W946686229 @default.
- W1978897095 doi "https://doi.org/10.1074/jbc.270.36.21331" @default.
- W1978897095 hasPubMedId "https://pubmed.ncbi.nlm.nih.gov/7673170" @default.
- W1978897095 hasPublicationYear "1995" @default.
- W1978897095 type Work @default.
- W1978897095 sameAs 1978897095 @default.
- W1978897095 citedByCount "54" @default.
- W1978897095 countsByYear W19788970952017 @default.
- W1978897095 crossrefType "journal-article" @default.
- W1978897095 hasAuthorship W1978897095A5023219655 @default.
- W1978897095 hasAuthorship W1978897095A5029499905 @default.
- W1978897095 hasAuthorship W1978897095A5032901717 @default.
- W1978897095 hasAuthorship W1978897095A5053308845 @default.
- W1978897095 hasAuthorship W1978897095A5084479067 @default.
- W1978897095 hasBestOaLocation W19788970951 @default.
- W1978897095 hasConcept C101762097 @default.
- W1978897095 hasConcept C102622118 @default.
- W1978897095 hasConcept C104292427 @default.
- W1978897095 hasConcept C104317684 @default.
- W1978897095 hasConcept C116834253 @default.
- W1978897095 hasConcept C121608353 @default.
- W1978897095 hasConcept C1292079 @default.
- W1978897095 hasConcept C14036430 @default.
- W1978897095 hasConcept C150194340 @default.
- W1978897095 hasConcept C185592680 @default.
- W1978897095 hasConcept C530470458 @default.
- W1978897095 hasConcept C54355233 @default.
- W1978897095 hasConcept C59822182 @default.
- W1978897095 hasConcept C84606932 @default.
- W1978897095 hasConcept C86339819 @default.
- W1978897095 hasConcept C86803240 @default.
- W1978897095 hasConcept C95444343 @default.
- W1978897095 hasConcept C98717036 @default.
- W1978897095 hasConceptScore W1978897095C101762097 @default.
- W1978897095 hasConceptScore W1978897095C102622118 @default.
- W1978897095 hasConceptScore W1978897095C104292427 @default.
- W1978897095 hasConceptScore W1978897095C104317684 @default.
- W1978897095 hasConceptScore W1978897095C116834253 @default.
- W1978897095 hasConceptScore W1978897095C121608353 @default.
- W1978897095 hasConceptScore W1978897095C1292079 @default.
- W1978897095 hasConceptScore W1978897095C14036430 @default.
- W1978897095 hasConceptScore W1978897095C150194340 @default.