Matches in SemOpenAlex for { <https://semopenalex.org/work/W1978956894> ?p ?o ?g. }
- W1978956894 endingPage "814" @default.
- W1978956894 startingPage "789" @default.
- W1978956894 abstract "Model predictive control is a form of control in which the current control action is obtained by solving, at each sampling instant, a finite horizon open-loop optimal control problem, using the current state of the plant as the initial state; the optimization yields an optimal control sequence and the first control in this sequence is applied to the plant. An important advantage of this type of control is its ability to cope with hard constraints on controls and states. It has, therefore, been widely applied in petro-chemical and related industries where satisfaction of constraints is particularly important because efficiency demands operating points on or close to the boundary of the set of admissible states and controls. In this review, we focus on model predictive control of constrained systems, both linear and nonlinear and discuss only briefly model predictive control of unconstrained nonlinear and/or time-varying systems. We concentrate our attention on research dealing with stability and optimality; in these areas the subject has developed, in our opinion, to a stage where it has achieved sufficient maturity to warrant the active interest of researchers in nonlinear control. We distill from an extensive literature essential principles that ensure stability and use these to present a concise characterization of most of the model predictive controllers that have been proposed in the literature. In some cases the finite horizon optimal control problem solved on-line is exactly equivalent to the same problem with an infinite horizon; in other cases it is equivalent to a modified infinite horizon optimal control problem. In both situations, known advantages of infinite horizon optimal control accrue." @default.
- W1978956894 created "2016-06-24" @default.
- W1978956894 creator A5005829958 @default.
- W1978956894 creator A5033056557 @default.
- W1978956894 creator A5034427513 @default.
- W1978956894 creator A5054788082 @default.
- W1978956894 date "2000-06-01" @default.
- W1978956894 modified "2023-10-10" @default.
- W1978956894 title "Constrained model predictive control: Stability and optimality" @default.
- W1978956894 cites W126053970 @default.
- W1978956894 cites W1492106702 @default.
- W1978956894 cites W1555937370 @default.
- W1978956894 cites W1559190657 @default.
- W1978956894 cites W1592658890 @default.
- W1978956894 cites W1603657390 @default.
- W1978956894 cites W1632977575 @default.
- W1978956894 cites W172769679 @default.
- W1978956894 cites W174707369 @default.
- W1978956894 cites W1972050403 @default.
- W1978956894 cites W1974375808 @default.
- W1978956894 cites W1976410223 @default.
- W1978956894 cites W1977985274 @default.
- W1978956894 cites W1986922155 @default.
- W1978956894 cites W1987614299 @default.
- W1978956894 cites W1988918758 @default.
- W1978956894 cites W1989582566 @default.
- W1978956894 cites W1989757707 @default.
- W1978956894 cites W1994330993 @default.
- W1978956894 cites W1995060100 @default.
- W1978956894 cites W2006498909 @default.
- W1978956894 cites W2007164115 @default.
- W1978956894 cites W2009594301 @default.
- W1978956894 cites W2010156340 @default.
- W1978956894 cites W2011539388 @default.
- W1978956894 cites W2016211524 @default.
- W1978956894 cites W2019254379 @default.
- W1978956894 cites W2019588170 @default.
- W1978956894 cites W2026072742 @default.
- W1978956894 cites W2026886971 @default.
- W1978956894 cites W2026903670 @default.
- W1978956894 cites W2028790617 @default.
- W1978956894 cites W2031013541 @default.
- W1978956894 cites W2033583016 @default.
- W1978956894 cites W2041109651 @default.
- W1978956894 cites W2042411765 @default.
- W1978956894 cites W2042439841 @default.
- W1978956894 cites W2048717989 @default.
- W1978956894 cites W2051270708 @default.
- W1978956894 cites W2051454550 @default.
- W1978956894 cites W2057184806 @default.
- W1978956894 cites W2060299133 @default.
- W1978956894 cites W2060707633 @default.
- W1978956894 cites W2061757541 @default.
- W1978956894 cites W2064349031 @default.
- W1978956894 cites W2066400947 @default.
- W1978956894 cites W2073586425 @default.
- W1978956894 cites W2073787051 @default.
- W1978956894 cites W2075767141 @default.
- W1978956894 cites W2077515891 @default.
- W1978956894 cites W2082708789 @default.
- W1978956894 cites W2098143780 @default.
- W1978956894 cites W2099882475 @default.
- W1978956894 cites W2100306753 @default.
- W1978956894 cites W2100941221 @default.
- W1978956894 cites W2102737570 @default.
- W1978956894 cites W2110703708 @default.
- W1978956894 cites W2116691829 @default.
- W1978956894 cites W2117579365 @default.
- W1978956894 cites W2120470833 @default.
- W1978956894 cites W2125976962 @default.
- W1978956894 cites W2127580532 @default.
- W1978956894 cites W2127800008 @default.
- W1978956894 cites W2132877212 @default.
- W1978956894 cites W2138942446 @default.
- W1978956894 cites W2147844094 @default.
- W1978956894 cites W2147894025 @default.
- W1978956894 cites W2150530793 @default.
- W1978956894 cites W2151301943 @default.
- W1978956894 cites W2155527096 @default.
- W1978956894 cites W2158051473 @default.
- W1978956894 cites W2164957979 @default.
- W1978956894 cites W2166483538 @default.
- W1978956894 cites W2166756101 @default.
- W1978956894 cites W2169684704 @default.
- W1978956894 cites W2174853294 @default.
- W1978956894 cites W2314040905 @default.
- W1978956894 cites W2563883854 @default.
- W1978956894 cites W2567137345 @default.
- W1978956894 cites W2672290735 @default.
- W1978956894 cites W2729873196 @default.
- W1978956894 cites W3140208685 @default.
- W1978956894 cites W31631095 @default.
- W1978956894 cites W4245176833 @default.
- W1978956894 cites W4246616525 @default.
- W1978956894 cites W4256109041 @default.
- W1978956894 cites W4302609762 @default.
- W1978956894 cites W4380729377 @default.
- W1978956894 doi "https://doi.org/10.1016/s0005-1098(99)00214-9" @default.