Matches in SemOpenAlex for { <https://semopenalex.org/work/W1979038041> ?p ?o ?g. }
- W1979038041 endingPage "172" @default.
- W1979038041 startingPage "158" @default.
- W1979038041 abstract "Solar occultation measurements by the Cassini Visual and Infrared Mapping Spectrometer (VIMS) reveal the near-infrared transmission of Titan’s atmosphere down to an altitude of ∼40 km. By combining these observations with VIMS reflectance measurements of Titan’s surface and knowledge of haze and gas opacity profiles from the Huygens probe, we constrain a simple model for the transfer of radiation in Titan’s atmosphere in order to derive surface reflectance in the methane windows used for compositional analysis. The advantages of this model are twofold: (1) it is accurate enough to yield useful results, yet simple enough to be implemented in just a few lines of code, and (2) the model parameters are directly constrained by the VIMS occultation and on-planet measurements. We focus on the 2.0, 2.7, 2.8 and 5.0 μm windows, where haze opacity is minimized, and diagnostic vibrational bands exist for water ice and other candidate surface species. A particularly important result is the strong atmospheric attenuation at 2.7 μm compared to 2.8 μm, resulting in a reversal of apparent spectral slope in a compositionally diagnostic wavelength range. These results show that Titan’s surface reflectance is much “bluer” and more closely matched by water ice than the uncorrected spectra would indicate, although the majority of Titan’s surface has a spectrum consistent with mixtures (either intimate or areal) of water ice and haze particles precipitated from the atmosphere. Compositions of geologic units can be accurately modeled as mixtures ranging from predominantly water ice (Sinlap crater ejecta and margins of dark equatorial terrain) to predominantly organic-rich (Tui Regio and Hotei Regio), with particles in the size range ∼10–20 μm. In distinguishing between hypothesized formation mechanisms for Tui and Hotei Regio, their organic-rich composition favors a process that concentrates precipitated haze particles, such as playa lake evaporite deposition (Barnes, J.W., Bow, J., Schwartz, J., Brown, R.H., Soderblom, J.M., Hayes, A.G., Vixie, G., Le Mouélic, S., Rodriguez, S., Sotin, C., Jaumann, R., Stephan, K., Soderblom, L.A., Clark, R.N., Buratti, B.J., Baines, K.H., Nicholson, P.D. [2011]. Icarus, 216, 136–140). In other places, kilometer-scale exposures of nearly pure water ice bedrock on Titan’s surface indicate relatively locally rapid erosion compared to rates of accumulation of solid hydrocarbons precipitated from the atmosphere. Somewhat surprisingly, Titan’s vast equatorial dune fields appear slightly enriched in water ice compared to the surrounding bright regions, but the spectrum of the dune material itself may nonetheless be consistent with a predominantly organic haze-derived composition." @default.
- W1979038041 created "2016-06-24" @default.
- W1979038041 creator A5020201307 @default.
- W1979038041 creator A5033918874 @default.
- W1979038041 creator A5035090601 @default.
- W1979038041 date "2014-11-01" @default.
- W1979038041 modified "2023-10-07" @default.
- W1979038041 title "Titan’s surface composition and atmospheric transmission with solar occultation measurements by Cassini VIMS" @default.
- W1979038041 cites W1495819400 @default.
- W1979038041 cites W1614773435 @default.
- W1979038041 cites W1832828437 @default.
- W1979038041 cites W1963557263 @default.
- W1979038041 cites W1967994005 @default.
- W1979038041 cites W1970435359 @default.
- W1979038041 cites W1971235542 @default.
- W1979038041 cites W1972028529 @default.
- W1979038041 cites W1976067301 @default.
- W1979038041 cites W1977107238 @default.
- W1979038041 cites W1978446652 @default.
- W1979038041 cites W1980896423 @default.
- W1979038041 cites W1985566733 @default.
- W1979038041 cites W1988146940 @default.
- W1979038041 cites W1989907325 @default.
- W1979038041 cites W1991570125 @default.
- W1979038041 cites W1994730059 @default.
- W1979038041 cites W1994863733 @default.
- W1979038041 cites W2003901579 @default.
- W1979038041 cites W2010146303 @default.
- W1979038041 cites W2018095252 @default.
- W1979038041 cites W2021066697 @default.
- W1979038041 cites W2021767482 @default.
- W1979038041 cites W2022529994 @default.
- W1979038041 cites W2022672094 @default.
- W1979038041 cites W2025174650 @default.
- W1979038041 cites W2029824029 @default.
- W1979038041 cites W2038291855 @default.
- W1979038041 cites W2039611384 @default.
- W1979038041 cites W2039994561 @default.
- W1979038041 cites W2047304224 @default.
- W1979038041 cites W2051991841 @default.
- W1979038041 cites W2053290328 @default.
- W1979038041 cites W2057836992 @default.
- W1979038041 cites W2059672595 @default.
- W1979038041 cites W2060936799 @default.
- W1979038041 cites W2065095882 @default.
- W1979038041 cites W2067919405 @default.
- W1979038041 cites W2074564424 @default.
- W1979038041 cites W2078886097 @default.
- W1979038041 cites W2079112811 @default.
- W1979038041 cites W2080220337 @default.
- W1979038041 cites W2080693683 @default.
- W1979038041 cites W2082971038 @default.
- W1979038041 cites W2083408367 @default.
- W1979038041 cites W2088453751 @default.
- W1979038041 cites W2091505187 @default.
- W1979038041 cites W2092096783 @default.
- W1979038041 cites W2093117139 @default.
- W1979038041 cites W2093361212 @default.
- W1979038041 cites W2105000361 @default.
- W1979038041 cites W2115492903 @default.
- W1979038041 cites W2115848828 @default.
- W1979038041 cites W2124871727 @default.
- W1979038041 cites W2128003802 @default.
- W1979038041 cites W2131503558 @default.
- W1979038041 cites W2150938638 @default.
- W1979038041 cites W2151655428 @default.
- W1979038041 cites W2157742295 @default.
- W1979038041 cites W2165954702 @default.
- W1979038041 cites W3021868680 @default.
- W1979038041 cites W3098707132 @default.
- W1979038041 cites W3114306413 @default.
- W1979038041 doi "https://doi.org/10.1016/j.icarus.2014.08.045" @default.
- W1979038041 hasPublicationYear "2014" @default.
- W1979038041 type Work @default.
- W1979038041 sameAs 1979038041 @default.
- W1979038041 citedByCount "23" @default.
- W1979038041 countsByYear W19790380412015 @default.
- W1979038041 countsByYear W19790380412016 @default.
- W1979038041 countsByYear W19790380412017 @default.
- W1979038041 countsByYear W19790380412018 @default.
- W1979038041 countsByYear W19790380412019 @default.
- W1979038041 countsByYear W19790380412021 @default.
- W1979038041 countsByYear W19790380412022 @default.
- W1979038041 countsByYear W19790380412023 @default.
- W1979038041 crossrefType "journal-article" @default.
- W1979038041 hasAuthorship W1979038041A5020201307 @default.
- W1979038041 hasAuthorship W1979038041A5033918874 @default.
- W1979038041 hasAuthorship W1979038041A5035090601 @default.
- W1979038041 hasConcept C120128738 @default.
- W1979038041 hasConcept C120665830 @default.
- W1979038041 hasConcept C121332964 @default.
- W1979038041 hasConcept C127313418 @default.
- W1979038041 hasConcept C1276947 @default.
- W1979038041 hasConcept C131040042 @default.
- W1979038041 hasConcept C147534773 @default.
- W1979038041 hasConcept C153294291 @default.
- W1979038041 hasConcept C39432304 @default.
- W1979038041 hasConcept C50805821 @default.