Matches in SemOpenAlex for { <https://semopenalex.org/work/W1979064770> ?p ?o ?g. }
- W1979064770 endingPage "3245" @default.
- W1979064770 startingPage "3237" @default.
- W1979064770 abstract "This paper proposes a new method for soft sensors (SS) design for industrial applications based on a Takagi–Sugeno (T–S) fuzzy model. The learning of the T–S model is performed from input/output data to approximate unknown nonlinear processes by a coevolationary genetic algorithm (GA). The proposed method is an automatic tool for SS design since it does not require any prior knowledge concerning the structure (e.g. the number of rules) and the database (e.g. antecedent fuzzy sets) of the T–S fuzzy model, and concerning the selection of the adequate input variables and their respective time delays for the prediction setting. The GA approach is composed by five hierarchical levels and has the global goal of maximizing the prediction accuracy. The first level consists in the selection of the set of input variables and respective delays for the T–S fuzzy model. The second level considers the encoding of the membership functions. The individual rules are defined at the third level, the population of the set of rules is treated in fourth level, and a population of fuzzy systems is handled at the fifth level. To validate and demonstrate the performance and effectiveness of the proposed algorithm, it is applied on two prediction problems. The first is the Box–Jenkins benchmark problem, and the second is the estimation of the flour concentration in the effluent of a real-world wastewater treatment system. Simulation results are presented showing that the developed evolving T–S fuzzy model can identify the nonlinear systems satisfactorily with appropriate input variables and delay selection and a reasonable number of rules. The proposed methodology is able to design all the parts of the T–S fuzzy prediction model. Moreover, presented comparison results indicate that the proposed method outperforms other previously proposed methods for the design of prediction models, including methods previously proposed for the design of T–S models." @default.
- W1979064770 created "2016-06-24" @default.
- W1979064770 creator A5015086090 @default.
- W1979064770 creator A5023127369 @default.
- W1979064770 creator A5054889833 @default.
- W1979064770 creator A5060785558 @default.
- W1979064770 date "2012-10-01" @default.
- W1979064770 modified "2023-10-12" @default.
- W1979064770 title "Genetic fuzzy system for data-driven soft sensors design" @default.
- W1979064770 cites W1969336179 @default.
- W1979064770 cites W1975834093 @default.
- W1979064770 cites W1985803848 @default.
- W1979064770 cites W1993579113 @default.
- W1979064770 cites W1994723463 @default.
- W1979064770 cites W1997690010 @default.
- W1979064770 cites W1999988847 @default.
- W1979064770 cites W2000651380 @default.
- W1979064770 cites W2042878822 @default.
- W1979064770 cites W2060273569 @default.
- W1979064770 cites W2067811909 @default.
- W1979064770 cites W2072245897 @default.
- W1979064770 cites W2079325629 @default.
- W1979064770 cites W2081090082 @default.
- W1979064770 cites W2097340162 @default.
- W1979064770 cites W2143318315 @default.
- W1979064770 cites W2147684166 @default.
- W1979064770 cites W2159265133 @default.
- W1979064770 doi "https://doi.org/10.1016/j.asoc.2012.05.009" @default.
- W1979064770 hasPublicationYear "2012" @default.
- W1979064770 type Work @default.
- W1979064770 sameAs 1979064770 @default.
- W1979064770 citedByCount "34" @default.
- W1979064770 countsByYear W19790647702012 @default.
- W1979064770 countsByYear W19790647702013 @default.
- W1979064770 countsByYear W19790647702014 @default.
- W1979064770 countsByYear W19790647702015 @default.
- W1979064770 countsByYear W19790647702016 @default.
- W1979064770 countsByYear W19790647702017 @default.
- W1979064770 countsByYear W19790647702018 @default.
- W1979064770 countsByYear W19790647702019 @default.
- W1979064770 countsByYear W19790647702020 @default.
- W1979064770 countsByYear W19790647702021 @default.
- W1979064770 countsByYear W19790647702022 @default.
- W1979064770 countsByYear W19790647702023 @default.
- W1979064770 crossrefType "journal-article" @default.
- W1979064770 hasAuthorship W1979064770A5015086090 @default.
- W1979064770 hasAuthorship W1979064770A5023127369 @default.
- W1979064770 hasAuthorship W1979064770A5054889833 @default.
- W1979064770 hasAuthorship W1979064770A5060785558 @default.
- W1979064770 hasConcept C119857082 @default.
- W1979064770 hasConcept C121332964 @default.
- W1979064770 hasConcept C124101348 @default.
- W1979064770 hasConcept C126255220 @default.
- W1979064770 hasConcept C127385683 @default.
- W1979064770 hasConcept C13280743 @default.
- W1979064770 hasConcept C144024400 @default.
- W1979064770 hasConcept C148671577 @default.
- W1979064770 hasConcept C149923435 @default.
- W1979064770 hasConcept C154945302 @default.
- W1979064770 hasConcept C158622935 @default.
- W1979064770 hasConcept C170260401 @default.
- W1979064770 hasConcept C177264268 @default.
- W1979064770 hasConcept C185798385 @default.
- W1979064770 hasConcept C1883856 @default.
- W1979064770 hasConcept C195975749 @default.
- W1979064770 hasConcept C199360897 @default.
- W1979064770 hasConcept C205649164 @default.
- W1979064770 hasConcept C2908647359 @default.
- W1979064770 hasConcept C29470771 @default.
- W1979064770 hasConcept C33923547 @default.
- W1979064770 hasConcept C41008148 @default.
- W1979064770 hasConcept C42011625 @default.
- W1979064770 hasConcept C58166 @default.
- W1979064770 hasConcept C62520636 @default.
- W1979064770 hasConcept C81917197 @default.
- W1979064770 hasConcept C8880873 @default.
- W1979064770 hasConceptScore W1979064770C119857082 @default.
- W1979064770 hasConceptScore W1979064770C121332964 @default.
- W1979064770 hasConceptScore W1979064770C124101348 @default.
- W1979064770 hasConceptScore W1979064770C126255220 @default.
- W1979064770 hasConceptScore W1979064770C127385683 @default.
- W1979064770 hasConceptScore W1979064770C13280743 @default.
- W1979064770 hasConceptScore W1979064770C144024400 @default.
- W1979064770 hasConceptScore W1979064770C148671577 @default.
- W1979064770 hasConceptScore W1979064770C149923435 @default.
- W1979064770 hasConceptScore W1979064770C154945302 @default.
- W1979064770 hasConceptScore W1979064770C158622935 @default.
- W1979064770 hasConceptScore W1979064770C170260401 @default.
- W1979064770 hasConceptScore W1979064770C177264268 @default.
- W1979064770 hasConceptScore W1979064770C185798385 @default.
- W1979064770 hasConceptScore W1979064770C1883856 @default.
- W1979064770 hasConceptScore W1979064770C195975749 @default.
- W1979064770 hasConceptScore W1979064770C199360897 @default.
- W1979064770 hasConceptScore W1979064770C205649164 @default.
- W1979064770 hasConceptScore W1979064770C2908647359 @default.
- W1979064770 hasConceptScore W1979064770C29470771 @default.
- W1979064770 hasConceptScore W1979064770C33923547 @default.
- W1979064770 hasConceptScore W1979064770C41008148 @default.