Matches in SemOpenAlex for { <https://semopenalex.org/work/W1979081194> ?p ?o ?g. }
Showing items 1 to 88 of
88
with 100 items per page.
- W1979081194 abstract "The future of high-performance computing is likely to rely on the ability to efficiently exploit huge amounts of parallelism. One way of taking advantage of this parallelism is to formulate problems as embarrassingly parallel Monte-Carlo simulations, which allow applications to achieve a linear speedup over multiple computational nodes, without requiring a super-linear increase in inter-node communication. However, such applications are reliant on a cheap supply of high quality random numbers, particularly for the three main maximum entropy distributions: uniform, used as a general source of randomness; Gaussian, for discrete-time simulations; and exponential, for discrete-event simulations. In this paper we look at four different types of platform: conventional multi-core CPUs (Intel Core2); GPUs (NVidia GTX 200); FPGAs (Xilinx Virtex-5); and Massively Parallel Processor Arrays (Ambric AM2000). For each platform we determine the most appropriate algorithm for generating each type of number, then calculate the peak generation rate and estimated power efficiency for each device." @default.
- W1979081194 created "2016-06-24" @default.
- W1979081194 creator A5024916818 @default.
- W1979081194 creator A5057940557 @default.
- W1979081194 creator A5081452934 @default.
- W1979081194 date "2009-02-22" @default.
- W1979081194 modified "2023-10-06" @default.
- W1979081194 title "A comparison of CPUs, GPUs, FPGAs, and massively parallel processor arrays for random number generation" @default.
- W1979081194 cites W1963898916 @default.
- W1979081194 cites W1965612527 @default.
- W1979081194 cites W1986517320 @default.
- W1979081194 cites W2008818007 @default.
- W1979081194 cites W2033532123 @default.
- W1979081194 cites W2063709269 @default.
- W1979081194 cites W2088916565 @default.
- W1979081194 cites W2097774686 @default.
- W1979081194 cites W2101832782 @default.
- W1979081194 cites W2117106078 @default.
- W1979081194 cites W2126075236 @default.
- W1979081194 cites W2141116325 @default.
- W1979081194 cites W2142962681 @default.
- W1979081194 cites W2160495765 @default.
- W1979081194 cites W2162404251 @default.
- W1979081194 cites W2169485677 @default.
- W1979081194 cites W2171113123 @default.
- W1979081194 cites W4240267682 @default.
- W1979081194 doi "https://doi.org/10.1145/1508128.1508139" @default.
- W1979081194 hasPublicationYear "2009" @default.
- W1979081194 type Work @default.
- W1979081194 sameAs 1979081194 @default.
- W1979081194 citedByCount "147" @default.
- W1979081194 countsByYear W19790811942012 @default.
- W1979081194 countsByYear W19790811942013 @default.
- W1979081194 countsByYear W19790811942014 @default.
- W1979081194 countsByYear W19790811942015 @default.
- W1979081194 countsByYear W19790811942016 @default.
- W1979081194 countsByYear W19790811942017 @default.
- W1979081194 countsByYear W19790811942018 @default.
- W1979081194 countsByYear W19790811942019 @default.
- W1979081194 countsByYear W19790811942020 @default.
- W1979081194 countsByYear W19790811942021 @default.
- W1979081194 countsByYear W19790811942022 @default.
- W1979081194 countsByYear W19790811942023 @default.
- W1979081194 crossrefType "proceedings-article" @default.
- W1979081194 hasAuthorship W1979081194A5024916818 @default.
- W1979081194 hasAuthorship W1979081194A5057940557 @default.
- W1979081194 hasAuthorship W1979081194A5081452934 @default.
- W1979081194 hasConcept C105795698 @default.
- W1979081194 hasConcept C11413529 @default.
- W1979081194 hasConcept C125112378 @default.
- W1979081194 hasConcept C126909462 @default.
- W1979081194 hasConcept C173608175 @default.
- W1979081194 hasConcept C190475519 @default.
- W1979081194 hasConcept C201866948 @default.
- W1979081194 hasConcept C2778119891 @default.
- W1979081194 hasConcept C33923547 @default.
- W1979081194 hasConcept C41008148 @default.
- W1979081194 hasConcept C459310 @default.
- W1979081194 hasConcept C68339613 @default.
- W1979081194 hasConceptScore W1979081194C105795698 @default.
- W1979081194 hasConceptScore W1979081194C11413529 @default.
- W1979081194 hasConceptScore W1979081194C125112378 @default.
- W1979081194 hasConceptScore W1979081194C126909462 @default.
- W1979081194 hasConceptScore W1979081194C173608175 @default.
- W1979081194 hasConceptScore W1979081194C190475519 @default.
- W1979081194 hasConceptScore W1979081194C201866948 @default.
- W1979081194 hasConceptScore W1979081194C2778119891 @default.
- W1979081194 hasConceptScore W1979081194C33923547 @default.
- W1979081194 hasConceptScore W1979081194C41008148 @default.
- W1979081194 hasConceptScore W1979081194C459310 @default.
- W1979081194 hasConceptScore W1979081194C68339613 @default.
- W1979081194 hasLocation W19790811941 @default.
- W1979081194 hasOpenAccess W1979081194 @default.
- W1979081194 hasPrimaryLocation W19790811941 @default.
- W1979081194 hasRelatedWork W2001516427 @default.
- W1979081194 hasRelatedWork W2057774067 @default.
- W1979081194 hasRelatedWork W2095778784 @default.
- W1979081194 hasRelatedWork W2101304161 @default.
- W1979081194 hasRelatedWork W2374237555 @default.
- W1979081194 hasRelatedWork W2532424781 @default.
- W1979081194 hasRelatedWork W2552652122 @default.
- W1979081194 hasRelatedWork W2570612679 @default.
- W1979081194 hasRelatedWork W2589012642 @default.
- W1979081194 hasRelatedWork W2993324210 @default.
- W1979081194 isParatext "false" @default.
- W1979081194 isRetracted "false" @default.
- W1979081194 magId "1979081194" @default.
- W1979081194 workType "article" @default.