Matches in SemOpenAlex for { <https://semopenalex.org/work/W1979083669> ?p ?o ?g. }
Showing items 1 to 92 of
92
with 100 items per page.
- W1979083669 endingPage "30" @default.
- W1979083669 startingPage "22" @default.
- W1979083669 abstract "has always been an area of interest for the researchers in various realms of finance especially in the stock market e.g. stock index, return on a stock, etc. Stock market volatility is one such area. Since the inception of implied volatility index (VIX) by the Chicago Board of Options Exchange (CBOE) in 1993, VIX index has generated a lot of interest. This study examines the predicting ability of several technical indicators related to VIX index to forecast the next trading day's volatility. There is a wide set of methods available for forecasting in finance. In this study, Artificial neural network (ANN) modeling technique has been employed to forecast the upwards or downwards movement in next trading day's volatility using India VIX (a volatility index based on the NIFTY Index Option prices) based indicators. The results of the study reveal that ANN models can be real handy in forecasting the downwards movement in VIX. The knowledge about a more probable downwards movement in volatility might be significant value add for the investors and help them in making decisions related to trading." @default.
- W1979083669 created "2016-06-24" @default.
- W1979083669 creator A5021830983 @default.
- W1979083669 creator A5039095774 @default.
- W1979083669 creator A5091866769 @default.
- W1979083669 date "2013-05-17" @default.
- W1979083669 modified "2023-10-11" @default.
- W1979083669 title "Predicting India Volatility Index: An Application of Artificial Neural Network" @default.
- W1979083669 cites W1495826811 @default.
- W1979083669 cites W1503343880 @default.
- W1979083669 cites W1767279340 @default.
- W1979083669 cites W1969865884 @default.
- W1979083669 cites W1981254972 @default.
- W1979083669 cites W1995319408 @default.
- W1979083669 cites W1995341919 @default.
- W1979083669 cites W2010907488 @default.
- W1979083669 cites W2015393497 @default.
- W1979083669 cites W2017480909 @default.
- W1979083669 cites W2021381787 @default.
- W1979083669 cites W2029587234 @default.
- W1979083669 cites W2046079134 @default.
- W1979083669 cites W2058593686 @default.
- W1979083669 cites W2072664345 @default.
- W1979083669 cites W2077791698 @default.
- W1979083669 cites W2101465260 @default.
- W1979083669 cites W2117999380 @default.
- W1979083669 cites W2118704847 @default.
- W1979083669 cites W2118854883 @default.
- W1979083669 cites W2120224355 @default.
- W1979083669 cites W2141703670 @default.
- W1979083669 cites W2142638246 @default.
- W1979083669 cites W2148080284 @default.
- W1979083669 cites W2152148559 @default.
- W1979083669 cites W2277258959 @default.
- W1979083669 cites W2335137352 @default.
- W1979083669 cites W3122053167 @default.
- W1979083669 cites W3210268394 @default.
- W1979083669 cites W411134128 @default.
- W1979083669 cites W646612956 @default.
- W1979083669 doi "https://doi.org/10.5120/11950-7768" @default.
- W1979083669 hasPublicationYear "2013" @default.
- W1979083669 type Work @default.
- W1979083669 sameAs 1979083669 @default.
- W1979083669 citedByCount "11" @default.
- W1979083669 countsByYear W19790836692015 @default.
- W1979083669 countsByYear W19790836692018 @default.
- W1979083669 countsByYear W19790836692019 @default.
- W1979083669 countsByYear W19790836692021 @default.
- W1979083669 countsByYear W19790836692022 @default.
- W1979083669 countsByYear W19790836692023 @default.
- W1979083669 crossrefType "journal-article" @default.
- W1979083669 hasAuthorship W1979083669A5021830983 @default.
- W1979083669 hasAuthorship W1979083669A5039095774 @default.
- W1979083669 hasAuthorship W1979083669A5091866769 @default.
- W1979083669 hasBestOaLocation W19790836691 @default.
- W1979083669 hasConcept C136764020 @default.
- W1979083669 hasConcept C149782125 @default.
- W1979083669 hasConcept C154945302 @default.
- W1979083669 hasConcept C2777382242 @default.
- W1979083669 hasConcept C33923547 @default.
- W1979083669 hasConcept C41008148 @default.
- W1979083669 hasConcept C50644808 @default.
- W1979083669 hasConcept C91602232 @default.
- W1979083669 hasConceptScore W1979083669C136764020 @default.
- W1979083669 hasConceptScore W1979083669C149782125 @default.
- W1979083669 hasConceptScore W1979083669C154945302 @default.
- W1979083669 hasConceptScore W1979083669C2777382242 @default.
- W1979083669 hasConceptScore W1979083669C33923547 @default.
- W1979083669 hasConceptScore W1979083669C41008148 @default.
- W1979083669 hasConceptScore W1979083669C50644808 @default.
- W1979083669 hasConceptScore W1979083669C91602232 @default.
- W1979083669 hasIssue "4" @default.
- W1979083669 hasLocation W19790836691 @default.
- W1979083669 hasOpenAccess W1979083669 @default.
- W1979083669 hasPrimaryLocation W19790836691 @default.
- W1979083669 hasRelatedWork W1596801655 @default.
- W1979083669 hasRelatedWork W2130043461 @default.
- W1979083669 hasRelatedWork W2350741829 @default.
- W1979083669 hasRelatedWork W2358668433 @default.
- W1979083669 hasRelatedWork W2376932109 @default.
- W1979083669 hasRelatedWork W2382290278 @default.
- W1979083669 hasRelatedWork W2390279801 @default.
- W1979083669 hasRelatedWork W2748952813 @default.
- W1979083669 hasRelatedWork W2899084033 @default.
- W1979083669 hasRelatedWork W2530322880 @default.
- W1979083669 hasVolume "70" @default.
- W1979083669 isParatext "false" @default.
- W1979083669 isRetracted "false" @default.
- W1979083669 magId "1979083669" @default.
- W1979083669 workType "article" @default.