Matches in SemOpenAlex for { <https://semopenalex.org/work/W1979100145> ?p ?o ?g. }
Showing items 1 to 88 of
88
with 100 items per page.
- W1979100145 endingPage "110" @default.
- W1979100145 startingPage "101" @default.
- W1979100145 abstract "The aim of the current paper is to obtain, through a proper selection of the training algorithm, an optimized artificial neural network (ANN) able to predict two parameters of interest for high-pressure (HP) food processing: the maximum or minimum temperature reached in the sample after pressurization and the time needed for thermal re-equilibration in the high-pressure process. To do that, 13 training algorithms belonging to 4 broad classes (gradient descent, conjugate gradient, quasi-Newton algorithms and Bayesian regularization) have been evaluated by training different ANNs. The network trained with the Levenberg–Marquardt algorithm showed the best overall predictive ability. The performance of this network was subsequently optimized by varying the number of nodes in the hidden layer, the learning coefficient and the decrease factor of this coefficient, and selecting the configuration with the highest predictive ability. The optimized ANN was able to make accurate predictions for the variables studied (temperature and time). These predictions were significantly better than those obtained by a previous ANN developed without selection of the training algorithm, that is, assuming the default option of the ANN computational package (gradient descent with a user-defined learning rate). We have shown that a correct selection of the training algorithm allows maximizing the predictive ability of the artificial neural network." @default.
- W1979100145 created "2016-06-24" @default.
- W1979100145 creator A5014710827 @default.
- W1979100145 creator A5016892401 @default.
- W1979100145 creator A5068756151 @default.
- W1979100145 date "2007-04-01" @default.
- W1979100145 modified "2023-10-14" @default.
- W1979100145 title "Optimization of an artificial neural network for thermal/pressure food processing: Evaluation of training algorithms" @default.
- W1979100145 cites W1978929520 @default.
- W1979100145 cites W1979923951 @default.
- W1979100145 cites W1988221971 @default.
- W1979100145 cites W1989548779 @default.
- W1979100145 cites W2000474716 @default.
- W1979100145 cites W2003143162 @default.
- W1979100145 cites W2008192125 @default.
- W1979100145 cites W2011930321 @default.
- W1979100145 cites W2030061687 @default.
- W1979100145 cites W2081685102 @default.
- W1979100145 cites W2087646072 @default.
- W1979100145 cites W2087952945 @default.
- W1979100145 cites W2089268064 @default.
- W1979100145 cites W2095313828 @default.
- W1979100145 doi "https://doi.org/10.1016/j.compag.2007.01.005" @default.
- W1979100145 hasPublicationYear "2007" @default.
- W1979100145 type Work @default.
- W1979100145 sameAs 1979100145 @default.
- W1979100145 citedByCount "41" @default.
- W1979100145 countsByYear W19791001452012 @default.
- W1979100145 countsByYear W19791001452013 @default.
- W1979100145 countsByYear W19791001452014 @default.
- W1979100145 countsByYear W19791001452015 @default.
- W1979100145 countsByYear W19791001452016 @default.
- W1979100145 countsByYear W19791001452018 @default.
- W1979100145 countsByYear W19791001452019 @default.
- W1979100145 countsByYear W19791001452020 @default.
- W1979100145 countsByYear W19791001452021 @default.
- W1979100145 countsByYear W19791001452023 @default.
- W1979100145 crossrefType "journal-article" @default.
- W1979100145 hasAuthorship W1979100145A5014710827 @default.
- W1979100145 hasAuthorship W1979100145A5016892401 @default.
- W1979100145 hasAuthorship W1979100145A5068756151 @default.
- W1979100145 hasConcept C11413529 @default.
- W1979100145 hasConcept C119857082 @default.
- W1979100145 hasConcept C121332964 @default.
- W1979100145 hasConcept C153258448 @default.
- W1979100145 hasConcept C153294291 @default.
- W1979100145 hasConcept C154945302 @default.
- W1979100145 hasConcept C155032097 @default.
- W1979100145 hasConcept C206688291 @default.
- W1979100145 hasConcept C2776135515 @default.
- W1979100145 hasConcept C2777211547 @default.
- W1979100145 hasConcept C41008148 @default.
- W1979100145 hasConcept C50644808 @default.
- W1979100145 hasConcept C81184566 @default.
- W1979100145 hasConceptScore W1979100145C11413529 @default.
- W1979100145 hasConceptScore W1979100145C119857082 @default.
- W1979100145 hasConceptScore W1979100145C121332964 @default.
- W1979100145 hasConceptScore W1979100145C153258448 @default.
- W1979100145 hasConceptScore W1979100145C153294291 @default.
- W1979100145 hasConceptScore W1979100145C154945302 @default.
- W1979100145 hasConceptScore W1979100145C155032097 @default.
- W1979100145 hasConceptScore W1979100145C206688291 @default.
- W1979100145 hasConceptScore W1979100145C2776135515 @default.
- W1979100145 hasConceptScore W1979100145C2777211547 @default.
- W1979100145 hasConceptScore W1979100145C41008148 @default.
- W1979100145 hasConceptScore W1979100145C50644808 @default.
- W1979100145 hasConceptScore W1979100145C81184566 @default.
- W1979100145 hasIssue "2" @default.
- W1979100145 hasLocation W19791001451 @default.
- W1979100145 hasOpenAccess W1979100145 @default.
- W1979100145 hasPrimaryLocation W19791001451 @default.
- W1979100145 hasRelatedWork W1539246760 @default.
- W1979100145 hasRelatedWork W2098528027 @default.
- W1979100145 hasRelatedWork W2104893957 @default.
- W1979100145 hasRelatedWork W2115605526 @default.
- W1979100145 hasRelatedWork W2207919472 @default.
- W1979100145 hasRelatedWork W2782354941 @default.
- W1979100145 hasRelatedWork W3093883775 @default.
- W1979100145 hasRelatedWork W4312154385 @default.
- W1979100145 hasRelatedWork W2185955524 @default.
- W1979100145 hasRelatedWork W2625259661 @default.
- W1979100145 hasVolume "56" @default.
- W1979100145 isParatext "false" @default.
- W1979100145 isRetracted "false" @default.
- W1979100145 magId "1979100145" @default.
- W1979100145 workType "article" @default.