Matches in SemOpenAlex for { <https://semopenalex.org/work/W1979275989> ?p ?o ?g. }
- W1979275989 endingPage "433" @default.
- W1979275989 startingPage "401" @default.
- W1979275989 abstract "Quantile-based methods appear in both statistical inference and exploratory data analysis. Inferential methods based on order statistics generally have extensive theoretical bases, while exploratory data analysis tends to emphasize graphical methods and often uses selected sets of quantiles such as the letter-values of Tukey (Exploratory Data Analysis, Addison-Wesley, Reading, MA, 1977b). Since transformations of random variables give rise to families of distributions defined through their quantile functions, quantile-based methods could be considered a natural approach when using such families. This paper considers quantile-based methods for fitting two such families of distributions (formed by transforming the standard normal), the g-and-k and the adapted g-and-h distributions, which have been developed to take advantage of certain shape functionals.The effects of different quantiles are taken into account by considering weighted sums of estimates based on quantiles within the data, these sets of estimates arising from matching shape, location and scale functionals. The methods considered correspond to different criteria for the weighted sums. These iteratively reweighted methods use approximations to means and variances of the functionals, and so not only produce parameter estimates, but also approximations of the mean and variance for these estimates, and weights which indicate which functionals of the quantiles of the data are found to be most important. A simulation study is included, and the procedures, distributions and approximations are also illustrated by fitting two air pollution datasets.Comparisons are made with a quick method that uses the median of the set of estimates, and with numerical maximum likelihood estimation which tends to be not efficient for these families until very large sample sizes are available (Rayner and MacGillivray, 2002). The results indicate that the weighted methods perform better in a number of ways than numerical maximum likelihood estimation for smaller and moderately-sized samples. MATLAB software to carry out the weighted method is available on request." @default.
- W1979275989 created "2016-06-24" @default.
- W1979275989 creator A5005559032 @default.
- W1979275989 creator A5066550843 @default.
- W1979275989 date "2002-06-01" @default.
- W1979275989 modified "2023-09-28" @default.
- W1979275989 title "Weighted quantile-based estimation for a class of transformation distributions" @default.
- W1979275989 cites W1482652061 @default.
- W1979275989 cites W1971974766 @default.
- W1979275989 cites W2009818264 @default.
- W1979275989 cites W2010015275 @default.
- W1979275989 cites W2018953589 @default.
- W1979275989 cites W2021447134 @default.
- W1979275989 cites W2022250041 @default.
- W1979275989 cites W2037499216 @default.
- W1979275989 cites W2054030090 @default.
- W1979275989 cites W2057386371 @default.
- W1979275989 cites W2059333978 @default.
- W1979275989 cites W2070255947 @default.
- W1979275989 cites W2073644113 @default.
- W1979275989 cites W2094658408 @default.
- W1979275989 cites W2131070718 @default.
- W1979275989 cites W2132886090 @default.
- W1979275989 cites W2139074728 @default.
- W1979275989 cites W2139209056 @default.
- W1979275989 cites W2165063810 @default.
- W1979275989 cites W2168745915 @default.
- W1979275989 cites W4236802179 @default.
- W1979275989 cites W4242046871 @default.
- W1979275989 cites W4242200137 @default.
- W1979275989 cites W4242617520 @default.
- W1979275989 cites W4244264281 @default.
- W1979275989 cites W4246245582 @default.
- W1979275989 cites W4247970938 @default.
- W1979275989 cites W4251404811 @default.
- W1979275989 cites W4256540010 @default.
- W1979275989 cites W67460294 @default.
- W1979275989 doi "https://doi.org/10.1016/s0167-9473(01)00090-1" @default.
- W1979275989 hasPublicationYear "2002" @default.
- W1979275989 type Work @default.
- W1979275989 sameAs 1979275989 @default.
- W1979275989 citedByCount "24" @default.
- W1979275989 countsByYear W19792759892013 @default.
- W1979275989 countsByYear W19792759892014 @default.
- W1979275989 countsByYear W19792759892015 @default.
- W1979275989 countsByYear W19792759892017 @default.
- W1979275989 countsByYear W19792759892018 @default.
- W1979275989 countsByYear W19792759892019 @default.
- W1979275989 countsByYear W19792759892021 @default.
- W1979275989 countsByYear W19792759892022 @default.
- W1979275989 crossrefType "journal-article" @default.
- W1979275989 hasAuthorship W1979275989A5005559032 @default.
- W1979275989 hasAuthorship W1979275989A5066550843 @default.
- W1979275989 hasConcept C104317684 @default.
- W1979275989 hasConcept C105795698 @default.
- W1979275989 hasConcept C118671147 @default.
- W1979275989 hasConcept C149782125 @default.
- W1979275989 hasConcept C154945302 @default.
- W1979275989 hasConcept C162324750 @default.
- W1979275989 hasConcept C185592680 @default.
- W1979275989 hasConcept C187736073 @default.
- W1979275989 hasConcept C204241405 @default.
- W1979275989 hasConcept C2777212361 @default.
- W1979275989 hasConcept C28826006 @default.
- W1979275989 hasConcept C33923547 @default.
- W1979275989 hasConcept C41008148 @default.
- W1979275989 hasConcept C55493867 @default.
- W1979275989 hasConcept C96250715 @default.
- W1979275989 hasConceptScore W1979275989C104317684 @default.
- W1979275989 hasConceptScore W1979275989C105795698 @default.
- W1979275989 hasConceptScore W1979275989C118671147 @default.
- W1979275989 hasConceptScore W1979275989C149782125 @default.
- W1979275989 hasConceptScore W1979275989C154945302 @default.
- W1979275989 hasConceptScore W1979275989C162324750 @default.
- W1979275989 hasConceptScore W1979275989C185592680 @default.
- W1979275989 hasConceptScore W1979275989C187736073 @default.
- W1979275989 hasConceptScore W1979275989C204241405 @default.
- W1979275989 hasConceptScore W1979275989C2777212361 @default.
- W1979275989 hasConceptScore W1979275989C28826006 @default.
- W1979275989 hasConceptScore W1979275989C33923547 @default.
- W1979275989 hasConceptScore W1979275989C41008148 @default.
- W1979275989 hasConceptScore W1979275989C55493867 @default.
- W1979275989 hasConceptScore W1979275989C96250715 @default.
- W1979275989 hasIssue "4" @default.
- W1979275989 hasLocation W19792759891 @default.
- W1979275989 hasOpenAccess W1979275989 @default.
- W1979275989 hasPrimaryLocation W19792759891 @default.
- W1979275989 hasRelatedWork W2052558588 @default.
- W1979275989 hasRelatedWork W2059186684 @default.
- W1979275989 hasRelatedWork W2061520105 @default.
- W1979275989 hasRelatedWork W2062274034 @default.
- W1979275989 hasRelatedWork W2091694095 @default.
- W1979275989 hasRelatedWork W2376310534 @default.
- W1979275989 hasRelatedWork W2525669318 @default.
- W1979275989 hasRelatedWork W2581236533 @default.
- W1979275989 hasRelatedWork W3121392242 @default.
- W1979275989 hasRelatedWork W3195863596 @default.
- W1979275989 hasVolume "39" @default.