Matches in SemOpenAlex for { <https://semopenalex.org/work/W1979458251> ?p ?o ?g. }
- W1979458251 endingPage "173" @default.
- W1979458251 startingPage "163" @default.
- W1979458251 abstract "Data assimilation and regression are two commonly used methods for combining models and remote sensing observations to estimate agricultural productivity. Data assimilation is a generative approach because it requires explicit approximations of a Bayesian prior and likelihood to compute a probability density function of biomass conditional on observations, and regression is discriminative because it models the conditional biomass density function directly. Both of these methods typically approximate Bayes’ law and therefore cannot be expected to be perfectly efficient at extracting information from remote sensing observations. In this paper we measure information in observations using Shannon’s theory and define missing information, used information, and bad information as partial divergences from the true Bayesian posterior (biomass conditional on observations). These concepts were applied to directly measure the amount and quality of information about end-of-season biomass extracted from observations by the ensemble Kalman filter (EnKF) and Gaussian process regression (GPR). Results suggest that the simpler discriminative approach can be as efficient as the more complex generative approach in terms of extracting high quality information from observations, and may therefore be better suited to dealing with the practical problems associated with remote sensed data (e.g., sub-footprint scale heterogeneity). Our method for analyzing information use has many potential applications: approximations of Bayes’ law are used regularly in predictive models of environmental systems of all kinds, and the efficiency of such approximations has heretofore not been directly measured." @default.
- W1979458251 created "2016-06-24" @default.
- W1979458251 creator A5045129894 @default.
- W1979458251 creator A5056778863 @default.
- W1979458251 creator A5087783891 @default.
- W1979458251 date "2013-12-01" @default.
- W1979458251 modified "2023-10-14" @default.
- W1979458251 title "Information loss in approximately Bayesian estimation techniques: A comparison of generative and discriminative approaches to estimating agricultural productivity" @default.
- W1979458251 cites W1507471273 @default.
- W1979458251 cites W1518765694 @default.
- W1979458251 cites W1579566970 @default.
- W1979458251 cites W1641218989 @default.
- W1979458251 cites W1966483641 @default.
- W1979458251 cites W1969702679 @default.
- W1979458251 cites W1971429204 @default.
- W1979458251 cites W1994954836 @default.
- W1979458251 cites W1995875735 @default.
- W1979458251 cites W1997991585 @default.
- W1979458251 cites W2009104157 @default.
- W1979458251 cites W2019022785 @default.
- W1979458251 cites W2022116239 @default.
- W1979458251 cites W2029687274 @default.
- W1979458251 cites W2039348932 @default.
- W1979458251 cites W2040827997 @default.
- W1979458251 cites W2043230890 @default.
- W1979458251 cites W2043791654 @default.
- W1979458251 cites W2057021477 @default.
- W1979458251 cites W2063434563 @default.
- W1979458251 cites W2067069641 @default.
- W1979458251 cites W2105934661 @default.
- W1979458251 cites W2107513045 @default.
- W1979458251 cites W2108034928 @default.
- W1979458251 cites W2110577024 @default.
- W1979458251 cites W2111344851 @default.
- W1979458251 cites W2115584735 @default.
- W1979458251 cites W2117319840 @default.
- W1979458251 cites W2119412271 @default.
- W1979458251 cites W2128931495 @default.
- W1979458251 cites W2133334233 @default.
- W1979458251 cites W2141219203 @default.
- W1979458251 cites W2142127434 @default.
- W1979458251 cites W2153901968 @default.
- W1979458251 cites W2161557312 @default.
- W1979458251 cites W2167814716 @default.
- W1979458251 cites W2172396214 @default.
- W1979458251 cites W2173190456 @default.
- W1979458251 cites W2176177568 @default.
- W1979458251 cites W2313063557 @default.
- W1979458251 cites W2317488766 @default.
- W1979458251 doi "https://doi.org/10.1016/j.jhydrol.2013.10.029" @default.
- W1979458251 hasPublicationYear "2013" @default.
- W1979458251 type Work @default.
- W1979458251 sameAs 1979458251 @default.
- W1979458251 citedByCount "23" @default.
- W1979458251 countsByYear W19794582512014 @default.
- W1979458251 countsByYear W19794582512015 @default.
- W1979458251 countsByYear W19794582512016 @default.
- W1979458251 countsByYear W19794582512017 @default.
- W1979458251 countsByYear W19794582512018 @default.
- W1979458251 countsByYear W19794582512019 @default.
- W1979458251 countsByYear W19794582512020 @default.
- W1979458251 countsByYear W19794582512021 @default.
- W1979458251 countsByYear W19794582512022 @default.
- W1979458251 crossrefType "journal-article" @default.
- W1979458251 hasAuthorship W1979458251A5045129894 @default.
- W1979458251 hasAuthorship W1979458251A5056778863 @default.
- W1979458251 hasAuthorship W1979458251A5087783891 @default.
- W1979458251 hasConcept C105795698 @default.
- W1979458251 hasConcept C107673813 @default.
- W1979458251 hasConcept C119857082 @default.
- W1979458251 hasConcept C153180895 @default.
- W1979458251 hasConcept C153294291 @default.
- W1979458251 hasConcept C154945302 @default.
- W1979458251 hasConcept C205649164 @default.
- W1979458251 hasConcept C207201462 @default.
- W1979458251 hasConcept C24552861 @default.
- W1979458251 hasConcept C33923547 @default.
- W1979458251 hasConcept C41008148 @default.
- W1979458251 hasConcept C81692654 @default.
- W1979458251 hasConcept C97931131 @default.
- W1979458251 hasConceptScore W1979458251C105795698 @default.
- W1979458251 hasConceptScore W1979458251C107673813 @default.
- W1979458251 hasConceptScore W1979458251C119857082 @default.
- W1979458251 hasConceptScore W1979458251C153180895 @default.
- W1979458251 hasConceptScore W1979458251C153294291 @default.
- W1979458251 hasConceptScore W1979458251C154945302 @default.
- W1979458251 hasConceptScore W1979458251C205649164 @default.
- W1979458251 hasConceptScore W1979458251C207201462 @default.
- W1979458251 hasConceptScore W1979458251C24552861 @default.
- W1979458251 hasConceptScore W1979458251C33923547 @default.
- W1979458251 hasConceptScore W1979458251C41008148 @default.
- W1979458251 hasConceptScore W1979458251C81692654 @default.
- W1979458251 hasConceptScore W1979458251C97931131 @default.
- W1979458251 hasLocation W19794582511 @default.
- W1979458251 hasOpenAccess W1979458251 @default.
- W1979458251 hasPrimaryLocation W19794582511 @default.
- W1979458251 hasRelatedWork W1972656095 @default.
- W1979458251 hasRelatedWork W2024160000 @default.