Matches in SemOpenAlex for { <https://semopenalex.org/work/W1979503732> ?p ?o ?g. }
- W1979503732 endingPage "2083" @default.
- W1979503732 startingPage "2069" @default.
- W1979503732 abstract "• Cavitation has been proposed as a green technique for the generation of pharmaceutical nanoemulsions. • Double and multiple emulsions have been generated using cavitation by ultrasound and hydrodynamic means. • Cavitation has significant advantages as compared to the counterparts in the generation of smaller droplet size. • Great potential in the commercial development of pharmaceutical nanoemulsions. Novel nanoemulsion-based drug delivery systems (DDS) have been proposed as alternative and effective approach for the delivery of various types of poorly water-soluble drugs in the last decade. This nanoformulation strategy significantly improves the cell uptake and bioavailability of numerous hydrophobic drugs by increasing their solubility and dissolution rate, maintaining drug concentration within the therapeutic range by controlling the drug release rate, and reducing systemic side effects by targeting to specific disease site, thus offering a better patient compliance. To date, cavitation technology has emerged to be an energy-efficient and promising technique to generate such nanoscale emulsions encapsulating a variety of highly potent pharmaceutical agents that are water-insoluble. The micro-turbulent implosions of cavitation bubbles tear-off primary giant oily emulsion droplets to nano-scale, spontaneously leading to the formation of highly uniform drug contained nanodroplets. A substantial body of recent literatures in the field of nanoemulsions suggests that cavitation is a facile, cost-reducing yet safer generation tool, remarkably highlighting its industrial commercial viability in the development of designing novel nanocarriers or enhancing the properties of existing pharmaceutical products. In this review, the fundamentals of nanoemulsion and the principles involved in their formation are presented. The underlying mechanisms in the generation of pharmaceutical nanoemulsion under acoustic field as well as the advantages of using cavitation compared to the conventional techniques are also highlighted. This review focuses on recent nanoemulsion-based DDS development and how cavitation through ultrasound and hydrodynamic means is useful to generate the pharmaceutical grade nanoemulsions including the complex double or submicron multiple emulsions." @default.
- W1979503732 created "2016-06-24" @default.
- W1979503732 creator A5002596268 @default.
- W1979503732 creator A5011394464 @default.
- W1979503732 creator A5016451994 @default.
- W1979503732 date "2014-11-01" @default.
- W1979503732 modified "2023-10-03" @default.
- W1979503732 title "Cavitation technology – A greener processing technique for the generation of pharmaceutical nanoemulsions" @default.
- W1979503732 cites W1517724727 @default.
- W1979503732 cites W1817348533 @default.
- W1979503732 cites W1925071139 @default.
- W1979503732 cites W1972419793 @default.
- W1979503732 cites W1979747907 @default.
- W1979503732 cites W1982191757 @default.
- W1979503732 cites W1984315665 @default.
- W1979503732 cites W1986638516 @default.
- W1979503732 cites W1989750245 @default.
- W1979503732 cites W1990450973 @default.
- W1979503732 cites W1991254399 @default.
- W1979503732 cites W1991316998 @default.
- W1979503732 cites W1992206525 @default.
- W1979503732 cites W1992906189 @default.
- W1979503732 cites W1993864351 @default.
- W1979503732 cites W2000820845 @default.
- W1979503732 cites W2004238611 @default.
- W1979503732 cites W2005938301 @default.
- W1979503732 cites W2006235098 @default.
- W1979503732 cites W2009489099 @default.
- W1979503732 cites W2010582425 @default.
- W1979503732 cites W2010671709 @default.
- W1979503732 cites W2014011160 @default.
- W1979503732 cites W2014688741 @default.
- W1979503732 cites W2016170593 @default.
- W1979503732 cites W2019783005 @default.
- W1979503732 cites W2021005040 @default.
- W1979503732 cites W2021929078 @default.
- W1979503732 cites W2024433537 @default.
- W1979503732 cites W2026537351 @default.
- W1979503732 cites W2027790566 @default.
- W1979503732 cites W2034737778 @default.
- W1979503732 cites W2037302131 @default.
- W1979503732 cites W2044475288 @default.
- W1979503732 cites W2048933340 @default.
- W1979503732 cites W2049741192 @default.
- W1979503732 cites W2050829806 @default.
- W1979503732 cites W2051294469 @default.
- W1979503732 cites W2053684203 @default.
- W1979503732 cites W2053702437 @default.
- W1979503732 cites W2058386663 @default.
- W1979503732 cites W2065331761 @default.
- W1979503732 cites W2069726112 @default.
- W1979503732 cites W2071905391 @default.
- W1979503732 cites W2074070212 @default.
- W1979503732 cites W2081903916 @default.
- W1979503732 cites W2082382445 @default.
- W1979503732 cites W2083796174 @default.
- W1979503732 cites W2087266891 @default.
- W1979503732 cites W2087335987 @default.
- W1979503732 cites W2091879005 @default.
- W1979503732 cites W2092740632 @default.
- W1979503732 cites W2094644241 @default.
- W1979503732 cites W2109078751 @default.
- W1979503732 cites W2117956547 @default.
- W1979503732 cites W2119831922 @default.
- W1979503732 cites W2124136536 @default.
- W1979503732 cites W2128157720 @default.
- W1979503732 cites W2128863256 @default.
- W1979503732 cites W2135592386 @default.
- W1979503732 cites W2141217262 @default.
- W1979503732 cites W2150471474 @default.
- W1979503732 cites W2159900974 @default.
- W1979503732 cites W2163196876 @default.
- W1979503732 cites W2174036090 @default.
- W1979503732 cites W2335172576 @default.
- W1979503732 doi "https://doi.org/10.1016/j.ultsonch.2014.03.025" @default.
- W1979503732 hasPubMedId "https://pubmed.ncbi.nlm.nih.gov/24755340" @default.
- W1979503732 hasPublicationYear "2014" @default.
- W1979503732 type Work @default.
- W1979503732 sameAs 1979503732 @default.
- W1979503732 citedByCount "208" @default.
- W1979503732 countsByYear W19795037322015 @default.
- W1979503732 countsByYear W19795037322016 @default.
- W1979503732 countsByYear W19795037322017 @default.
- W1979503732 countsByYear W19795037322018 @default.
- W1979503732 countsByYear W19795037322019 @default.
- W1979503732 countsByYear W19795037322020 @default.
- W1979503732 countsByYear W19795037322021 @default.
- W1979503732 countsByYear W19795037322022 @default.
- W1979503732 countsByYear W19795037322023 @default.
- W1979503732 crossrefType "journal-article" @default.
- W1979503732 hasAuthorship W1979503732A5002596268 @default.
- W1979503732 hasAuthorship W1979503732A5011394464 @default.
- W1979503732 hasAuthorship W1979503732A5016451994 @default.
- W1979503732 hasConcept C104628117 @default.
- W1979503732 hasConcept C121332964 @default.
- W1979503732 hasConcept C127413603 @default.
- W1979503732 hasConcept C171250308 @default.
- W1979503732 hasConcept C178790620 @default.