Matches in SemOpenAlex for { <https://semopenalex.org/work/W1979511045> ?p ?o ?g. }
Showing items 1 to 76 of
76
with 100 items per page.
- W1979511045 abstract "Abstract In carbonate reservoirs, the mechanism of acidizing revolves around the development of wormholes. Therefore, understanding these wormholes is essential to increase their efficiency, and as a result, optimize the stimulation treatment. Characterization of wormholing efficiency using coreflooding data and computerized tomography (CT) scanning is widely known in the industry. In addition, computational fluid dynamics (CFD) have been used to model the flow in wormhole networks. Using Nuclear Magnetic Resonance (NMR) to study and characterize a full breakthrough-wormhole is still a new initiative. NMR, in general, provides fluid saturation by imaging the nuclide concentration of a variety of nuclei and the information about the pore structure and the fluid-rock interaction by measuring the longitudinal and transverse relaxation time, and diffusion constant of the nuclei of interest, mostly proton (1H). This set of information is translated into porosity values and distribution, and can be further processed to generate accurate permeability values. In this work, NMR analysis was successfully conducted on fully broken through core plugs. The results of NMR showed changes in the porosity and permeability. In addition, NMR detected a connectivity changes between the micro- and macropores. The acquired data from NMR was combined with CT and coreflooding data to further help to understand the properties of wormhole created. Introduction The objective of conducting well stimulation is to enhance the formation permeability or bypass damaged zones. Matrix acidizing and fracturing are the two main techniques of well stimulations. Choosing either of these options depends on the condition of the well, type of formation and completion, well testing results, etc. Matrix acidizing technique depends on the reservoir type. Acidizing sandstone formations occurs by dissolving clays and quartz to clear the way for the fluid flow. In limestone or dolomite (carbonate in general), acids create permeable channels usually referred to as wormholes. The efficiency of these wormholes is evaluated by its penetration depth, the required acid volume to reach that depth, stability and conductivity of the wormhole. Wormholes are created by reacting acids with calcium carbonate at certain condition that favors the fluid going deeper (penetration) rather than sideways (face dissolution). The main factors that govern the creation of wormholes are:acid strength and concentration,rock composition,injection rate, andtemperature and pressure. For an acid to create wormhole, these factors must be at certain conditions. For example, the reaction rate has to be slow. The reaction between strong acids, e.g. Hydrochloric acid (HCl), and calcite (calcium carbonate) is very fast and vigorous, while weak acids, such as organic acids or chelating agents, react rather slowly with calcite. Therefore, slow reacting acids are expected to create wormholes more than strong acids. Hydrochloric acid, as a strong acid, has been the industry's favorite choice when acidizing conventional wells in carbonate formations of low temperatures, because of its high dissolution power and relatively cheap cost. However, the problems of high reaction rate between acid and rock, and corrosion of tubulars are a concern. As a solution, emulsified acids, where the acid is mixed and coated with a hydrocarbon phase at a certain ratio, have been used as retarded versions of strong acids. One of the famous emulsified acids is HCl in diesel emulsified acid. The diesel phase protects tubular from corrosion and the formation from reacting vigorously with HCl. Several studies have been conducted to optimize the emulsified acid to get the best penetration and wormholing." @default.
- W1979511045 created "2016-06-24" @default.
- W1979511045 creator A5042528806 @default.
- W1979511045 creator A5065592456 @default.
- W1979511045 creator A5072179993 @default.
- W1979511045 creator A5076519164 @default.
- W1979511045 date "2013-03-26" @default.
- W1979511045 modified "2023-09-27" @default.
- W1979511045 title "Wormhole Characterisation Using NMR" @default.
- W1979511045 doi "https://doi.org/10.2523/iptc-17063-ms" @default.
- W1979511045 hasPublicationYear "2013" @default.
- W1979511045 type Work @default.
- W1979511045 sameAs 1979511045 @default.
- W1979511045 citedByCount "5" @default.
- W1979511045 countsByYear W19795110452016 @default.
- W1979511045 countsByYear W19795110452017 @default.
- W1979511045 countsByYear W19795110452020 @default.
- W1979511045 countsByYear W19795110452022 @default.
- W1979511045 crossrefType "proceedings-article" @default.
- W1979511045 hasAuthorship W1979511045A5042528806 @default.
- W1979511045 hasAuthorship W1979511045A5065592456 @default.
- W1979511045 hasAuthorship W1979511045A5072179993 @default.
- W1979511045 hasAuthorship W1979511045A5076519164 @default.
- W1979511045 hasConcept C105569014 @default.
- W1979511045 hasConcept C120882062 @default.
- W1979511045 hasConcept C121332964 @default.
- W1979511045 hasConcept C159985019 @default.
- W1979511045 hasConcept C161790260 @default.
- W1979511045 hasConcept C1633027 @default.
- W1979511045 hasConcept C185592680 @default.
- W1979511045 hasConcept C192562407 @default.
- W1979511045 hasConcept C29013271 @default.
- W1979511045 hasConcept C41625074 @default.
- W1979511045 hasConcept C46141821 @default.
- W1979511045 hasConcept C55493867 @default.
- W1979511045 hasConcept C57879066 @default.
- W1979511045 hasConcept C57924286 @default.
- W1979511045 hasConcept C62520636 @default.
- W1979511045 hasConcept C6648577 @default.
- W1979511045 hasConcept C82776694 @default.
- W1979511045 hasConcept C90278072 @default.
- W1979511045 hasConceptScore W1979511045C105569014 @default.
- W1979511045 hasConceptScore W1979511045C120882062 @default.
- W1979511045 hasConceptScore W1979511045C121332964 @default.
- W1979511045 hasConceptScore W1979511045C159985019 @default.
- W1979511045 hasConceptScore W1979511045C161790260 @default.
- W1979511045 hasConceptScore W1979511045C1633027 @default.
- W1979511045 hasConceptScore W1979511045C185592680 @default.
- W1979511045 hasConceptScore W1979511045C192562407 @default.
- W1979511045 hasConceptScore W1979511045C29013271 @default.
- W1979511045 hasConceptScore W1979511045C41625074 @default.
- W1979511045 hasConceptScore W1979511045C46141821 @default.
- W1979511045 hasConceptScore W1979511045C55493867 @default.
- W1979511045 hasConceptScore W1979511045C57879066 @default.
- W1979511045 hasConceptScore W1979511045C57924286 @default.
- W1979511045 hasConceptScore W1979511045C62520636 @default.
- W1979511045 hasConceptScore W1979511045C6648577 @default.
- W1979511045 hasConceptScore W1979511045C82776694 @default.
- W1979511045 hasConceptScore W1979511045C90278072 @default.
- W1979511045 hasLocation W19795110451 @default.
- W1979511045 hasOpenAccess W1979511045 @default.
- W1979511045 hasPrimaryLocation W19795110451 @default.
- W1979511045 hasRelatedWork W1968803094 @default.
- W1979511045 hasRelatedWork W2003558698 @default.
- W1979511045 hasRelatedWork W2016244319 @default.
- W1979511045 hasRelatedWork W2366556326 @default.
- W1979511045 hasRelatedWork W2367338962 @default.
- W1979511045 hasRelatedWork W2779770081 @default.
- W1979511045 hasRelatedWork W2793833536 @default.
- W1979511045 hasRelatedWork W3040469027 @default.
- W1979511045 hasRelatedWork W4235836405 @default.
- W1979511045 hasRelatedWork W4253214901 @default.
- W1979511045 isParatext "false" @default.
- W1979511045 isRetracted "false" @default.
- W1979511045 magId "1979511045" @default.
- W1979511045 workType "article" @default.