Matches in SemOpenAlex for { <https://semopenalex.org/work/W1979511656> ?p ?o ?g. }
- W1979511656 endingPage "400" @default.
- W1979511656 startingPage "325" @default.
- W1979511656 abstract "1.|The cellular pattern of serine metabolism was conceptualized into four main areas of metabolic sequences: the biosynthesis of serine from intermediates of the glycolytic pathway (the so-called “phosphorylated pathway”); and alternative pathways of serine utilization initiated by serine dehydratase, serine aminotransferase and serine hydroxymethyltransferase. 2.|The known regulatory and adaptive properties of the enzymes involved in these pathways were reviewed in detail and key enzymes associated with each pathway (phosphoserine aminotransferase, serine dehydratase, serine aminotransferase, and serine hydroxymethyltransferase, respectively) were selected for further investigation. 3.|Tissue distribution studies in the rat revealed that whereas serine dehydratase and serine aminotransferase activities were largely confined to the liver, phosphoserine aminotransferase and serine hydroxymethyltransferase activities were more broadly distributed. In particular in tissues with a high rate of cell turnover, phosphoserine aminotransferase and serine hydroxymethyltransferase activities were coordinately increased. An increase in serine hydroxymethyltransferase activity coincided temporally with the incorporation of [3-14C]serine and thymidine into DNA in normal human lymphocytes during proliferation after mitogenic stimulation by phytohemagglutinin. The evidence suggested a primarily gluconeogenic role for serine dehydratase and serine aminotransferase. Serine hydroxymethyl-transferase has a role in providing glycine and one-carbon folate co-factors as precursors for nucleotide biosynthesis and in some situations serves to metabolically couple the pathway of serine biosynthesis to utilization for de novo purine and pyrimidine synthesis. 4.|Multiple enzymic forms were distinguished for serine dehydratase, serine aminotransferase and serine hydroxymethyltransferase. For serine dehydratase the two cytosolic multiple forms had no apparent functional significance; the multiple forms were catalytically unmodified by conditions promoting phosphorylation-dephosphorylation in vitro. The mitochondrial form of serine aminotransferase showed adaptive responses in gluconcogenic situations, and the hypothesis was proposed that the mitochondrial isoenzyme of serine hydroxymethyltransferase is associated together with serine aminotransferase in a pathway for gluconeogenesis from protein-derived amino acids such as glycine and hydroxyproline. 5.|The adaptive behaviour of the enzymes during the neonatal development of rat liver revealed that serine aminotransferase reached a peak in the mid-suckling period at a time when gluconcogenesis is known to be increased. Use of phosphoenolypyruvate carboxykinase inhibitors (mercaptopicolinate or quinolinate) supported a pathway via serine aminotransferase for gluconeogenesis from serine and hydroxyproline at this developmental stage. The concept of the involvement in a carbon salvage pathway to deal with increased body collagen turnover at this time was advanced. The developmental adaptation of serine aminotransferase at birth was shown to involve glucagon, acting via cyclic AMP, and to be dependent on transcriptional gene regulation. 6.|Serine dehydratase showed a biphasic developmental pattern, similar to other enzymes involved in amino acid catabolism. The peaks of activity at the early neonatal and weaning developmental stages were shown to involve the joint action of glucagon, acting via cyclic AMP, and corticosteroid hormones. The inductions were dependent, at least initially, on transcriptional gene regulation but the precise mechanistic role of the two classes of hormone has yet to be defined. At both developmental peaks the distribution of serine dehydratase multiple forms was identical, and differential developmental regulation of the forms was not involved in determining the overall pattern of serine dehydratase development. 7.|Phosphoserine aminotransferase and cytosolic serine hydroxymethyl-transferase showed similar developmental patterns with a peak of activity in the perinatal period. This coincides with an active period of hepatocyte proliferation and of nucleotide biosynthesis. A further rise of serine hydroxymethyltransferase coinciding with a second postnatal surge of proliferative hepatocellular growth was independent of de novo serine biosynthesis and reflected increased provision of serine from dietary sources. 8.|A survey of the key enzymes of serine metabolism in transplantable rat neoplasms revealed that, in general, serine dehydratase and serine aminotransferase were deleted from the cellular repertoire of metabolic capacities. In contrast, phosphoserine aminotransferase and serine hydroxymethyltransferase were selectively retained to varying degrees in neoplastic tissues. 9.|The pattern of serine metabolism displayed in normal, developing and neoplastic tissues revealed an integrated, genetically-programmed, response of enzymes of serine biosynthesis and of alternative enzymes of serine utilization. A major role for serine metabolism in cellular proliferation was emphasized by the coordination of serine synthesis from carbohydrate precursors with the biosynthesis of purine and pyrimidine nucleotides through a metabolic coupling via serine hydroxymethyltransferase." @default.
- W1979511656 created "2016-06-24" @default.
- W1979511656 creator A5048356833 @default.
- W1979511656 date "1984-01-01" @default.
- W1979511656 modified "2023-10-01" @default.
- W1979511656 title "Enzymes of serine metabolism in normal, developing and neoplastic rat tissues" @default.
- W1979511656 cites W112238131 @default.
- W1979511656 cites W122195215 @default.
- W1979511656 cites W126721035 @default.
- W1979511656 cites W134004843 @default.
- W1979511656 cites W1444476374 @default.
- W1979511656 cites W1488496569 @default.
- W1979511656 cites W149727747 @default.
- W1979511656 cites W1497823285 @default.
- W1979511656 cites W1500057643 @default.
- W1979511656 cites W1512435793 @default.
- W1979511656 cites W1515596817 @default.
- W1979511656 cites W1518269440 @default.
- W1979511656 cites W1519085449 @default.
- W1979511656 cites W1523855174 @default.
- W1979511656 cites W1525543681 @default.
- W1979511656 cites W1526121097 @default.
- W1979511656 cites W152629346 @default.
- W1979511656 cites W1533070343 @default.
- W1979511656 cites W1538151656 @default.
- W1979511656 cites W1542819329 @default.
- W1979511656 cites W1552855969 @default.
- W1979511656 cites W1556290465 @default.
- W1979511656 cites W1565095777 @default.
- W1979511656 cites W1581567568 @default.
- W1979511656 cites W159149018 @default.
- W1979511656 cites W1596954494 @default.
- W1979511656 cites W1598004947 @default.
- W1979511656 cites W1598356151 @default.
- W1979511656 cites W1606959026 @default.
- W1979511656 cites W1608146040 @default.
- W1979511656 cites W1754232805 @default.
- W1979511656 cites W1756352294 @default.
- W1979511656 cites W1800127113 @default.
- W1979511656 cites W180378100 @default.
- W1979511656 cites W1811411730 @default.
- W1979511656 cites W1840221672 @default.
- W1979511656 cites W1846822997 @default.
- W1979511656 cites W1846939061 @default.
- W1979511656 cites W1856948275 @default.
- W1979511656 cites W1860814820 @default.
- W1979511656 cites W1897024723 @default.
- W1979511656 cites W1901900138 @default.
- W1979511656 cites W1910631050 @default.
- W1979511656 cites W1965855348 @default.
- W1979511656 cites W1968908577 @default.
- W1979511656 cites W1969904171 @default.
- W1979511656 cites W1970025780 @default.
- W1979511656 cites W1971597431 @default.
- W1979511656 cites W1974179743 @default.
- W1979511656 cites W1977993590 @default.
- W1979511656 cites W1978290580 @default.
- W1979511656 cites W1978563925 @default.
- W1979511656 cites W1979874255 @default.
- W1979511656 cites W1980250364 @default.
- W1979511656 cites W1984515976 @default.
- W1979511656 cites W1984767413 @default.
- W1979511656 cites W1990586165 @default.
- W1979511656 cites W1992153821 @default.
- W1979511656 cites W1993100768 @default.
- W1979511656 cites W1993322805 @default.
- W1979511656 cites W1996834577 @default.
- W1979511656 cites W2002080915 @default.
- W1979511656 cites W2010359655 @default.
- W1979511656 cites W2011862846 @default.
- W1979511656 cites W2012144048 @default.
- W1979511656 cites W2018275786 @default.
- W1979511656 cites W2019421026 @default.
- W1979511656 cites W2023243060 @default.
- W1979511656 cites W2024667843 @default.
- W1979511656 cites W2024738340 @default.
- W1979511656 cites W2025305072 @default.
- W1979511656 cites W2026769291 @default.
- W1979511656 cites W2026812455 @default.
- W1979511656 cites W2027438959 @default.
- W1979511656 cites W2028548189 @default.
- W1979511656 cites W2031573051 @default.
- W1979511656 cites W2036621258 @default.
- W1979511656 cites W2036957370 @default.
- W1979511656 cites W2037972689 @default.
- W1979511656 cites W2038226224 @default.
- W1979511656 cites W2041256543 @default.
- W1979511656 cites W2043181600 @default.
- W1979511656 cites W2047168669 @default.
- W1979511656 cites W2054708009 @default.
- W1979511656 cites W2056552951 @default.
- W1979511656 cites W2062828747 @default.
- W1979511656 cites W2064747760 @default.
- W1979511656 cites W2065344345 @default.
- W1979511656 cites W2067892208 @default.
- W1979511656 cites W2073793435 @default.
- W1979511656 cites W2082858335 @default.
- W1979511656 cites W2083167534 @default.