Matches in SemOpenAlex for { <https://semopenalex.org/work/W1979589689> ?p ?o ?g. }
- W1979589689 endingPage "969" @default.
- W1979589689 startingPage "957" @default.
- W1979589689 abstract "Placebo analgesia and reward processing share several features. For instance, expectations have a strong influence on the subsequent emotional experience of both. Recent imaging data indicate similarities in the underlying neuronal network. We hypothesized that placebo analgesia is a special case of reward processing and that placebo treatment could modulate emotional perception in the same way as does pain perception. The behavioral part of this study indicates that placebo treatment has an effect on how subjects perceive unpleasant pictures. Furthermore, event-related fMRI demonstrated that the same modulatory network, including the rostral anterior cingulate cortex and the lateral orbitofrontal cortex, is involved in both emotional placebo and placebo analgesia. These effects were correlated with the reported placebo effect and were predicted by the amount of treatment expectation induced on a previous day. Thus, the placebo effect may be considered to be a general process of modulation induced by the subjects’ expectations. Placebo analgesia and reward processing share several features. For instance, expectations have a strong influence on the subsequent emotional experience of both. Recent imaging data indicate similarities in the underlying neuronal network. We hypothesized that placebo analgesia is a special case of reward processing and that placebo treatment could modulate emotional perception in the same way as does pain perception. The behavioral part of this study indicates that placebo treatment has an effect on how subjects perceive unpleasant pictures. Furthermore, event-related fMRI demonstrated that the same modulatory network, including the rostral anterior cingulate cortex and the lateral orbitofrontal cortex, is involved in both emotional placebo and placebo analgesia. These effects were correlated with the reported placebo effect and were predicted by the amount of treatment expectation induced on a previous day. Thus, the placebo effect may be considered to be a general process of modulation induced by the subjects’ expectations. The neuroscientific basis of placebo analgesia was firmly established when Levine et al. (Levine et al., 1978Levine J.D. Gordon N.C. Fields H.L. The mechanism of placebo analgesia.Lancet. 1978; 2: 654-657Abstract PubMed Scopus (718) Google Scholar) discovered that the placebo response could be blocked using the opioid receptor antagonist naloxone, indicating involvement of the endogenous opioid system. Following this finding, complex experimental designs have elucidated several components underlying the placebo analgesia response. For instance, a robust and replicable correlation has been shown between the degree of expected efficiency of the treatment (treatment expectation) and the reported decrease in pain rating following placebo treatment (placebo-induced analgesia) (Price, 1999Price D. Placebo analgesia.in: Price D.D. Psychological Mechanisms of Pain and Analgesia. I.A.S.P. Press, Seattle, WA1999: 155-181Google Scholar, Wall, 1999Wall P. The placebo and the placebo response.in: Wall P. Melzack R. Textbook of Pain. Churchill Livingstone, New York1999: 1419-1430Google Scholar). One strategy for induction of treatment expectations has been to lower the noxious stimulation level (after an initial exposure) when a nonspecific treatment, i.e., placebo, was applied, without informing the subjects about this procedure (Montgomery and Kirsch, 1997Montgomery G.H. Kirsch I. Classical conditioning and the placebo effect.Pain. 1997; 72: 107-113Abstract Full Text Full Text PDF PubMed Scopus (362) Google Scholar, Price et al., 1999Price D.D. Milling L.S. Kirsch I. Duff A. Montgomery G.H. Nicholls S.S. An analysis of factors that contribute to the magnitude of placebo analgesia in an experimental paradigm.Pain. 1999; 83: 147-156Abstract Full Text Full Text PDF PubMed Scopus (424) Google Scholar, Voudouris et al., 1989Voudouris N.J. Peck C.L. Coleman G. Conditioned response models of placebo phenomena: further support.Pain. 1989; 38: 109-116Abstract Full Text PDF PubMed Scopus (162) Google Scholar, Voudouris et al., 1990Voudouris N.J. Peck C.L. Coleman G. The role of conditioning and verbal expectancy in the placebo response.Pain. 1990; 43: 121-128Abstract Full Text PDF PubMed Scopus (284) Google Scholar). After the learning phase, a new placebo treatment was followed by a noxious stimulation that was once again set to the pretreatment level. The placebo effect was highly enhanced compared to when no such prior manipulation was performed (Voudouris et al., 1989Voudouris N.J. Peck C.L. Coleman G. Conditioned response models of placebo phenomena: further support.Pain. 1989; 38: 109-116Abstract Full Text PDF PubMed Scopus (162) Google Scholar, Voudouris et al., 1990Voudouris N.J. Peck C.L. Coleman G. The role of conditioning and verbal expectancy in the placebo response.Pain. 1990; 43: 121-128Abstract Full Text PDF PubMed Scopus (284) Google Scholar) or when the subjects were fully informed about the manipulation (Montgomery and Kirsch, 1997Montgomery G.H. Kirsch I. Classical conditioning and the placebo effect.Pain. 1997; 72: 107-113Abstract Full Text Full Text PDF PubMed Scopus (362) Google Scholar). Another strategy to induce treatment expectation has been to first induce analgesia with a specific drug (e.g., an opioid) and to then administer a placebo treatment, informing the subjects that the same drug was used although it actually consisted of a nonspecific treatment (Amanzio and Benedetti, 1999Amanzio M. Benedetti F. Neuropharmacological dissection of placebo analgesia: expectation-activated opioid systems versus conditioning-activated specific subsystems.J. Neurosci. 1999; 19: 484-494PubMed Google Scholar). Both strategies are much more effective than just informing subjects falsely about the efficiency of a treatment, i.e., placebo without any active manipulation. In other words, placebo has been shown to be crucially dependent on learning effects. This is exemplified by the strong correlation between treatment expectations and the placebo effect (Price et al., 1999Price D.D. Milling L.S. Kirsch I. Duff A. Montgomery G.H. Nicholls S.S. An analysis of factors that contribute to the magnitude of placebo analgesia in an experimental paradigm.Pain. 1999; 83: 147-156Abstract Full Text Full Text PDF PubMed Scopus (424) Google Scholar). Expectations are fundamental in all emotional processes, allowing the individual to interact with an upcoming emotional or motivational situation before it actually occurs. It has been postulated that the ventral tegmental area (VTA) modulates a reward network, including the amygdala, the orbitofrontal cortex (Obfc), the anterior cingulate cortex (ACC), and the striatum, through dopaminergic projections in order to accomplish reward learning (Schultz, 2002Schultz W. Getting formal with dopamine and reward.Neuron. 2002; 36: 241-263Abstract Full Text Full Text PDF PubMed Scopus (1804) Google Scholar). One critical component in this process is reward expectation, which includes a similar dopamine-dependent activation in part of this network during the anticipation phase. The neural correlate of expectation has been shown in several functional imaging studies of emotion in general, and of reward processing specifically (Breiter et al., 2001Breiter H.C. Aharon I. Kahneman D. Dale A. Shizgal P. Functional imaging of neural responses to expectancy and experience of monetary gains and losses.Neuron. 2001; 30: 619-639Abstract Full Text Full Text PDF PubMed Scopus (992) Google Scholar, Ernst et al., 2004Ernst M. Nelson E.E. McClure E.B. Monk C.S. Munson S. Eshel N. Zarahn E. Leibenluft E. Zametkin A. Towbin K. et al.Choice selection and reward anticipation: an fMRI study.Neuropsychologia. 2004; 42: 1585-1597Crossref PubMed Scopus (270) Google Scholar, Gottfried et al., 2003Gottfried J.A. O’Doherty J. Dolan R.J. Encoding predictive reward value in human amygdala and orbitofrontal cortex.Science. 2003; 301: 1104-1107Crossref PubMed Scopus (865) Google Scholar, Kirsch et al., 2003Kirsch P. Schienle A. Stark R. Sammer G. Blecker C. Walter B. Ott U. Burkart J. Vaitl D. Anticipation of reward in a nonaversive differential conditioning paradigm and the brain reward system: an event-related fMRI study.Neuroimage. 2003; 20: 1086-1095Crossref PubMed Scopus (193) Google Scholar, Knutson et al., 2001Knutson B. Fong G.W. Adams C.M. Varner J.L. Hommer D. Dissociation of reward anticipation and outcome with event-related fMRI.Neuroreport. 2001; 12: 3683-3687Crossref PubMed Scopus (965) Google Scholar, O’Doherty et al., 2002O’Doherty J.P. Deichmann R. Critchley H.D. Dolan R.J. Neural responses during anticipation of a primary taste reward..Neuron. 2002; 33: 815-826Abstract Full Text Full Text PDF PubMed Scopus (826) Google Scholar, Ramnani and Miall, 2003Ramnani N. Miall R.C. Instructed delay activity in the human prefrontal cortex is modulated by monetary reward expectation.Cereb. Cortex. 2003; 13: 318-327Crossref PubMed Scopus (78) Google Scholar, Schaefer et al., 2002Schaefer S.M. Jackson D.C. Davidson R.J. Aguirre G.K. Kimberg D.Y. Thompson-Schill S.L. Modulation of amygdalar activity by the conscious regulation of negative emotion.J. Cogn. Neurosci. 2002; 14: 913-921Crossref PubMed Scopus (242) Google Scholar, Ueda et al., 2003Ueda K. Okamoto Y. Okada G. Yamashita H. Hori T. Yamawaki S. Brain activity during expectancy of emotional stimuli: an fMRI study.Neuroreport. 2003; 14: 51-55Crossref PubMed Scopus (98) Google Scholar). It has been suggested that the ventral striatum responds in a linear fashion to the degree of the reward both during the anticipatory (Breiter et al., 2001Breiter H.C. Aharon I. Kahneman D. Dale A. Shizgal P. Functional imaging of neural responses to expectancy and experience of monetary gains and losses.Neuron. 2001; 30: 619-639Abstract Full Text Full Text PDF PubMed Scopus (992) Google Scholar, Ernst et al., 2004Ernst M. Nelson E.E. McClure E.B. Monk C.S. Munson S. Eshel N. Zarahn E. Leibenluft E. Zametkin A. Towbin K. et al.Choice selection and reward anticipation: an fMRI study.Neuropsychologia. 2004; 42: 1585-1597Crossref PubMed Scopus (270) Google Scholar, Knutson et al., 2001Knutson B. Fong G.W. Adams C.M. Varner J.L. Hommer D. Dissociation of reward anticipation and outcome with event-related fMRI.Neuroreport. 2001; 12: 3683-3687Crossref PubMed Scopus (965) Google Scholar) and the reward phase (Breiter et al., 2001Breiter H.C. Aharon I. Kahneman D. Dale A. Shizgal P. Functional imaging of neural responses to expectancy and experience of monetary gains and losses.Neuron. 2001; 30: 619-639Abstract Full Text Full Text PDF PubMed Scopus (992) Google Scholar). However, functional imaging studies have also implicated the ACC, the Obfc, and the amygdala in reward expectation (Breiter et al., 2001Breiter H.C. Aharon I. Kahneman D. Dale A. Shizgal P. Functional imaging of neural responses to expectancy and experience of monetary gains and losses.Neuron. 2001; 30: 619-639Abstract Full Text Full Text PDF PubMed Scopus (992) Google Scholar, Ernst et al., 2004Ernst M. Nelson E.E. McClure E.B. Monk C.S. Munson S. Eshel N. Zarahn E. Leibenluft E. Zametkin A. Towbin K. et al.Choice selection and reward anticipation: an fMRI study.Neuropsychologia. 2004; 42: 1585-1597Crossref PubMed Scopus (270) Google Scholar, Knutson et al., 2001Knutson B. Fong G.W. Adams C.M. Varner J.L. Hommer D. Dissociation of reward anticipation and outcome with event-related fMRI.Neuroreport. 2001; 12: 3683-3687Crossref PubMed Scopus (965) Google Scholar, Gottfried et al., 2003Gottfried J.A. O’Doherty J. Dolan R.J. Encoding predictive reward value in human amygdala and orbitofrontal cortex.Science. 2003; 301: 1104-1107Crossref PubMed Scopus (865) Google Scholar, O’Doherty et al., 2002O’Doherty J.P. Deichmann R. Critchley H.D. Dolan R.J. Neural responses during anticipation of a primary taste reward..Neuron. 2002; 33: 815-826Abstract Full Text Full Text PDF PubMed Scopus (826) Google Scholar). Reward processing also includes components other than learning, such as motivational and affective-emotional processes (Berridge and Robinson, 2003Berridge K.C. Robinson T.E. Parsing reward.Trends Neurosci. 2003; 26: 507-513Abstract Full Text Full Text PDF PubMed Scopus (1289) Google Scholar). Similarly, apart from being important for learning, reward expectation has a direct effect on the emotional experience. Different reward expectations and outcomes directly influence how we feel and how a subsequent specific stimulation is emotionally experienced (Mellers, 2000Mellers B.A. Choice and the relative pleasure of consequences.Psychol. Bull. 2000; 126: 910-924Crossref PubMed Scopus (318) Google Scholar). The rationale for the direct effect of reward expectation on emotional experience may be interpreted in the light of emotional experience being a bias signal for cognitive processes (Bechara et al., 1997Bechara A. Damasio H. Tranel D. Damasio A.R. Deciding advantageously before knowing the advantageous strategy.Science. 1997; 275: 1293-1295Crossref PubMed Scopus (2319) Google Scholar, Damasio, 1996Damasio A.R. The somatic marker hypothesis and the possible functions of the prefrontal cortex.Philos. Trans. R. Soc. Lond. B Biol. Sci. 1996; 351: 1413-1420Crossref PubMed Scopus (1664) Google Scholar). Recently, functional imaging studies have described underlying neuronal networks involved in the placebo analgesia process (Lieberman et al., 2004Lieberman M.D. Jarcho J.M. Berman S. Naliboff B.D. Suyenobu B.Y. Mandelkern M. Mayer E.A. The neural correlates of placebo effects: a disruption account.Neuroimage. 2004; 22: 447-455Crossref PubMed Scopus (228) Google Scholar, Petrovic et al., 2002Petrovic P. Kalso E. Petersson K.M. Ingvar M. Placebo and opioid analgesia—Imagine a shared neuronal network.Science. 2002; 295: 1737-1740Crossref PubMed Scopus (1124) Google Scholar, Wager et al., 2004Wager T.D. Rilling J.K. Smith E.E. Sokolik A. Casey K.L. Davidson R.J. Kosslyn S.M. Rose R.M. Cohen J.D. Placebo-induced changes in FMRI in the anticipation and experience of pain.Science. 2004; 303: 1162-1167Crossref PubMed Scopus (1400) Google Scholar) and their effect on the pain matrix (Lieberman et al., 2004Lieberman M.D. Jarcho J.M. Berman S. Naliboff B.D. Suyenobu B.Y. Mandelkern M. Mayer E.A. The neural correlates of placebo effects: a disruption account.Neuroimage. 2004; 22: 447-455Crossref PubMed Scopus (228) Google Scholar, Wager et al., 2004Wager T.D. Rilling J.K. Smith E.E. Sokolik A. Casey K.L. Davidson R.J. Kosslyn S.M. Rose R.M. Cohen J.D. Placebo-induced changes in FMRI in the anticipation and experience of pain.Science. 2004; 303: 1162-1167Crossref PubMed Scopus (1400) Google Scholar), although no relationship has yet been proven between treatment expectation and the placebo response in the brain. Pain is a composite perception and includes sensory, motivational, and central control processing (Melzack and Casey, 1968Melzack R. Casey K.L. Sensory, motivational and central control determinants of pain.in: Kenshalo D.R. The Skin Senses. CC Thomas, Springfield, IL1968: 423-439Google Scholar). The medial pain system, which includes the ACC and the insula, is thought to be involved in the emotional-motivational aspect of pain processing (Vogt et al., 1993Vogt B.A. Sikes R.W. Vogt L.J. Anterior cingulate cortex and the medial pain system.in: Vogt B.A. Gabriel M. Neurobiology of Cingulate Cortex and Limbic Thalamus. Birkhäuser, Boston1993: 313-344Crossref Google Scholar). Regions activated by noxious stimulation and specifically belonging to the medial pain system (Peyron et al., 2000Peyron R. Laurent B. Garcia-Larrea L. Functional imaging of brain responses to pain. A review and meta-analysis (2000).Neurophysiol. Clin. 2000; 30: 263-288Crossref PubMed Scopus (1680) Google Scholar, Vogt et al., 1993Vogt B.A. Sikes R.W. Vogt L.J. Anterior cingulate cortex and the medial pain system.in: Vogt B.A. Gabriel M. Neurobiology of Cingulate Cortex and Limbic Thalamus. Birkhäuser, Boston1993: 313-344Crossref Google Scholar) are also involved in the processing of more abstract derivates of pain, such as anticipation of pain (Hsieh et al., 1999Hsieh J.C. Stone-Elander S. Ingvar M. Anticipatory coping of pain expressed in the human anterior cingulate cortex: a positron emission tomography study.Neurosci. Lett. 1999; 262: 61-64Crossref PubMed Scopus (213) Google Scholar, Jensen et al., 2003Jensen J. McIntosh A.R. Crawley A.P. Mikulis D.J. Remington G. Kapur S. Direct activation of the ventral striatum in anticipation of aversive stimuli.Neuron. 2003; 40: 1251-1257Abstract Full Text Full Text PDF PubMed Scopus (348) Google Scholar, Koyama et al., 1998Koyama T. Tanaka Y.Z. Mikami A. Nociceptive neurons in the macaque anterior cingulate activate during anticipation of pain.Neuroreport. 1998; 9: 2663-2667Crossref PubMed Scopus (139) Google Scholar, Ploghaus et al., 1999Ploghaus A. Tracey I. Gati J.S. Clare S. Menon R.S. Matthews P.M. Rawlins J.N. Dissociating pain from its anticipation in the human brain.Science. 1999; 284: 1979-1981Crossref PubMed Scopus (885) Google Scholar), empathy for pain (Singer et al., 2004Singer T. Seymour B. O’Doherty J. Kaube H. Dolan R.J. Frith C.D. Empathy for pain involves the affective but not sensory components of pain.Science. 2004; 303: 1157-1162Crossref PubMed Scopus (2587) Google Scholar), and social exclusion (Eisenberger et al., 2003Eisenberger N.I. Lieberman M.D. Williams K.D. Does rejection hurt? An FMRI study of social exclusion.Science. 2003; 302: 290-292Crossref PubMed Scopus (2261) Google Scholar). Moreover, a similar network takes part in the processing of unpleasant emotions (Phillips et al., 2003Phillips M.L. Drevets W.C. Rauch S.L. Lane R. Neurobiology of emotion perception I: The neural basis of normal emotion perception.Biol. Psychiatry. 2003; 54: 504-514Abstract Full Text Full Text PDF PubMed Scopus (1592) Google Scholar). Apart from the involvement of similar regions in the processing of pain and emotion, both placebo analgesia (Lieberman et al., 2004Lieberman M.D. Jarcho J.M. Berman S. Naliboff B.D. Suyenobu B.Y. Mandelkern M. Mayer E.A. The neural correlates of placebo effects: a disruption account.Neuroimage. 2004; 22: 447-455Crossref PubMed Scopus (228) Google Scholar, Petrovic et al., 2002Petrovic P. Kalso E. Petersson K.M. Ingvar M. Placebo and opioid analgesia—Imagine a shared neuronal network.Science. 2002; 295: 1737-1740Crossref PubMed Scopus (1124) Google Scholar, Wager et al., 2004Wager T.D. Rilling J.K. Smith E.E. Sokolik A. Casey K.L. Davidson R.J. Kosslyn S.M. Rose R.M. Cohen J.D. Placebo-induced changes in FMRI in the anticipation and experience of pain.Science. 2004; 303: 1162-1167Crossref PubMed Scopus (1400) Google Scholar) and emotional regulation (Bishop et al., 2004Bishop S. Duncan J. Brett M. Lawrence A.D. Prefrontal cortical function and anxiety: controlling attention to threat-related stimuli.Nat. Neurosci. 2004; 7: 184-188Crossref PubMed Scopus (666) Google Scholar, Ochsner et al., 2002Ochsner K.N. Bunge S.A. Gross J.J. Gabrieli J.D. Rethinking feelings: an FMRI study of the cognitive regulation of emotion.J. Cogn. Neurosci. 2002; 14: 1215-1229Crossref PubMed Scopus (1738) Google Scholar) are associated with increased activation in a modulatory network that includes the rostral ACC (rACC) and the ventrolateral prefrontal cortex (vlPFC)/lateral Obfc (lObfc). This suggests a functional-anatomical relationship between placebo analgesia and emotional regulation in which a top-down modulation of the pain or emotional network is implemented. There are thus similarities between placebo analgesia and reward processing, especially as both involve anticipation of a positive outcome and are highly dependent on expectations. The main difference is that the concept of a placebo effect involves a reduced aversion, while the reward concept is associated with a pleasant experience. Here we suggest that placebo analgesia is actually a special case of reward processing, in agreement with recent theoretical considerations (Fields, 2004Fields H. State-dependent opioid control of pain.Nat. Rev. Neurosci. 2004; 5: 565-575Crossref PubMed Scopus (590) Google Scholar, Vase et al., 2004Vase L. Price D.D. Verne G.N. Robinson M.E. The contribution of changes in expected pain levels and desire for pain relief to placebo analgesia.in: Price D.D. Bushnell M.C. Psychological Methods of Pain Control: Basic Science and Clinical Perspectives, Progress in Pain Research and Management, Volume 29. IASP Press, Seattle2004: 207-232Google Scholar). If this is the case, the mechanisms underlying the placebo analgesia effect must be viewed as a general process not specifically coupled to pain. We therefore suggest that the placebo phenomenon may be applied to any emotional experience. To test this hypothesis, we probed for placebo effects in the setting of unpleasant emotional experience induced by standardized affective pictures. In order to generate a strong placebo effect, we induced a treatment expectation in the group of participating subjects 1 day prior to the test day using drugs that have well-described specific effects on the emotional experience (anxiolytic drug and blocker of the anxiolytic drug). This procedure was termed an “expectation manipulation” in analogy with previous similar active manipulations preceding placebo analgesia (Amanzio and Benedetti, 1999Amanzio M. Benedetti F. Neuropharmacological dissection of placebo analgesia: expectation-activated opioid systems versus conditioning-activated specific subsystems.J. Neurosci. 1999; 19: 484-494PubMed Google Scholar, Montgomery and Kirsch, 1997Montgomery G.H. Kirsch I. Classical conditioning and the placebo effect.Pain. 1997; 72: 107-113Abstract Full Text Full Text PDF PubMed Scopus (362) Google Scholar, Price et al., 1999Price D.D. Milling L.S. Kirsch I. Duff A. Montgomery G.H. Nicholls S.S. An analysis of factors that contribute to the magnitude of placebo analgesia in an experimental paradigm.Pain. 1999; 83: 147-156Abstract Full Text Full Text PDF PubMed Scopus (424) Google Scholar, Voudouris et al., 1989Voudouris N.J. Peck C.L. Coleman G. Conditioned response models of placebo phenomena: further support.Pain. 1989; 38: 109-116Abstract Full Text PDF PubMed Scopus (162) Google Scholar, Voudouris et al., 1990Voudouris N.J. Peck C.L. Coleman G. The role of conditioning and verbal expectancy in the placebo response.Pain. 1990; 43: 121-128Abstract Full Text PDF PubMed Scopus (284) Google Scholar). On day 2, we tested for behavioral placebo effects and whether the same underlying network was involved in emotional placebo as in placebo analgesia (Lieberman et al., 2004Lieberman M.D. Jarcho J.M. Berman S. Naliboff B.D. Suyenobu B.Y. Mandelkern M. Mayer E.A. The neural correlates of placebo effects: a disruption account.Neuroimage. 2004; 22: 447-455Crossref PubMed Scopus (228) Google Scholar, Petrovic et al., 2002Petrovic P. Kalso E. Petersson K.M. Ingvar M. Placebo and opioid analgesia—Imagine a shared neuronal network.Science. 2002; 295: 1737-1740Crossref PubMed Scopus (1124) Google Scholar, Wager et al., 2004Wager T.D. Rilling J.K. Smith E.E. Sokolik A. Casey K.L. Davidson R.J. Kosslyn S.M. Rose R.M. Cohen J.D. Placebo-induced changes in FMRI in the anticipation and experience of pain.Science. 2004; 303: 1162-1167Crossref PubMed Scopus (1400) Google Scholar) and emotional regulation (Bishop et al., 2004Bishop S. Duncan J. Brett M. Lawrence A.D. Prefrontal cortical function and anxiety: controlling attention to threat-related stimuli.Nat. Neurosci. 2004; 7: 184-188Crossref PubMed Scopus (666) Google Scholar, Ochsner et al., 2002Ochsner K.N. Bunge S.A. Gross J.J. Gabrieli J.D. Rethinking feelings: an FMRI study of the cognitive regulation of emotion.J. Cogn. Neurosci. 2002; 14: 1215-1229Crossref PubMed Scopus (1738) Google Scholar) using event-related fMRI. Visual processing of complex emotional situations and faces, especially fearful and threatening visual stimuli, involves activation of an emotional network including the extrastriate cortex and the amygdala (Geday et al., 2003Geday J. Gjedde A. Boldsen A.S. Kupers R. Emotional valence modulates activity in the posterior fusiform gyrus and inferior medial prefrontal cortex in social perception.Neuroimage. 2003; 18: 675-684Crossref PubMed Scopus (103) Google Scholar, Surguladze et al., 2003Surguladze S.A. Brammer M.J. Young A.W. Andrew C. Travis M.J. Williams S.C. Phillips M.L. A preferential increase in the extrastriate response to signals of danger.Neuroimage. 2003; 19: 1317-1328Crossref PubMed Scopus (168) Google Scholar, Vuilleumier et al., 2001Vuilleumier P. Armony J.L. Driver J. Dolan R.J. Effects of attention and emotion on face processing in the human brain: an event-related fMRI study.Neuron. 2001; 30: 829-841Abstract Full Text Full Text PDF PubMed Scopus (1289) Google Scholar). Top-down modulation of perceptions is often an effect of regulation through secondary sensory regions and limbic networks (Mesulam, 1998Mesulam M.-M. From sensation to cognition.Brain. 1998; 121: 1013-1052Crossref PubMed Scopus (1917) Google Scholar). Previous studies have indicated that the extrastriate cortex and the amygdala are prone to such top-down modulations in emotional processing of visual stimuli (Hariri et al., 2003Hariri A.R. Mattay V.S. Tessitore A. Fera F. Weinberger D.R. Neocortical modulation of the amygdala response to fearful stimuli.Biol. Psychiatry. 2003; 53: 494-501Abstract Full Text Full Text PDF PubMed Scopus (622) Google Scholar, Ochsner et al., 2002Ochsner K.N. Bunge S.A. Gross J.J. Gabrieli J.D. Rethinking feelings: an FMRI study of the cognitive regulation of emotion.J. Cogn. Neurosci. 2002; 14: 1215-1229Crossref PubMed Scopus (1738) Google Scholar, Pessoa et al., 2002Pessoa L. McKenna M. Gutierrez E. Ungerleider L.G. Neural processing of emotional faces requires attention.Proc. Natl. Acad. Sci. USA. 2002; 99: 11458-11463Crossref PubMed Scopus (899) Google Scholar, Vuilleumier et al., 2001Vuilleumier P. Armony J.L. Driver J. Dolan R.J. Effects of attention and emotion on face processing in the human brain: an event-related fMRI study.Neuron. 2001; 30: 829-841Abstract Full Text Full Text PDF PubMed Scopus (1289) Google Scholar). Thus we hypothesized that activation of the extrastriate cortex and the amygdala should be attenuated, while activation of the prefrontal regions and the rACC should be augmented by the placebo treatment in the present study of visual emotional processing. If these physiological effects truly mirror a placebo mechanism, they should also be most evident in the subjects that demonstrated the strongest behaviorally measured placebo response (Wager et al., 2004Wager T.D. Rilling J.K. Smith E.E. Sokolik A. Casey K.L. Davidson R.J. Kosslyn S.M. Rose R.M. Cohen J.D. Placebo-induced changes in FMRI in the anticipation and experience of pain.Science. 2004; 303: 1162-1167Crossref PubMed Scopus (1400) Google Scholar). Given the relationship between treatment expectation and placebo response, we also tested whether the placebo-dependent responses in the brain directly correlated with the degree of expectation. The degree of expectation was approximated to the reported behavioral effect of the specific treatment preceding the placebo procedure. We enrolled 15 healthy subjects in a 2 day experiment to study the placebo effect on visual emotional processing using a set of standardized affective pictures (IAPS) (Lang et al., 1995Lang P. Bradley M. Cuthbert B. International Affective Picture System (IAPS): Technical Manual and Affective Ratings. The center for research in psychophysiology, University of Florida, Gainseville, FL1995Google Scholar). On the first day, anxiolytic and anxiolytic-blocker drugs were used in order to modulate the experience of unpleasant pictures. Specific treatment induced an expectancy effect for the drugs, which is an important factor in the induction of a placebo response. On the second day, the subjects were treated with the placebo while viewing the same type of unpleasant pictures. The underlying neural response was simultaneously measured using event-related fMRI. On day 1, the subjects were shown three presentation blocks (with a duration of approximately 5 min each) of pseudorandomly mixed unpleasant and neutral pictures. The subjects were asked to rate the mean perceived unpleasantness of the viewed unpleasant pictures at the end of each presentation block using a visual analog scale ranging from 0 to 100. After the first presentation in which no drugs had been given (presentation block 1; unpleasantness rating = 51.0; range = 30–76), the subjects were treated with a low dose of benzodiazepine intravenously (midazolam, 0.015 mg/kg), which dramatically decreased the unpleasantness rating in each subject during the second presentation (presentation block 2; unpleasantness rating = 29.0; range = 8–52) (Figure 1A ). This effect was completely reversed in the third presentation (presentation block 3; unpleasantness rating = 60.9; range = 25–88) for all subjects by pretreating them intravenously with a benzodiazepine receptor antagonist (flumazenil, 0.25 mg) (Figure 1A). The subjects were informed of the possible effect of the anxiolytic and the anxiolytic blocker drugs on their perception of emotions before the experiment and before each picture presentation block. Thus, on the first day a robust expectation of the treatment effect was induced (i.e., the experience of the drug treatment and the given information), which is an important component in the placebo response. The subjects were further told that both the anxiolytic drug and the anxiolytic blocker would be used again on day 2 in the fMRI experiment. On day 2, the subjects underwent the event-related fMRI s" @default.
- W1979589689 created "2016-06-24" @default.
- W1979589689 creator A5000121498 @default.
- W1979589689 creator A5002342124 @default.
- W1979589689 creator A5012502944 @default.
- W1979589689 creator A5025929350 @default.
- W1979589689 creator A5043516060 @default.
- W1979589689 creator A5067061176 @default.
- W1979589689 date "2005-06-01" @default.
- W1979589689 modified "2023-10-13" @default.
- W1979589689 title "Placebo in Emotional Processing— Induced Expectations of Anxiety Relief Activate a Generalized Modulatory Network" @default.
- W1979589689 cites W1499836032 @default.
- W1979589689 cites W1562703792 @default.
- W1979589689 cites W1594303435 @default.
- W1979589689 cites W1734828809 @default.
- W1979589689 cites W1963525383 @default.
- W1979589689 cites W1968428857 @default.
- W1979589689 cites W1971276952 @default.
- W1979589689 cites W1973167291 @default.
- W1979589689 cites W1974572323 @default.
- W1979589689 cites W1978753901 @default.
- W1979589689 cites W1982327643 @default.
- W1979589689 cites W1982997670 @default.
- W1979589689 cites W1984030600 @default.
- W1979589689 cites W1990486104 @default.
- W1979589689 cites W1990532043 @default.
- W1979589689 cites W1996630292 @default.
- W1979589689 cites W1998152406 @default.
- W1979589689 cites W2006633893 @default.
- W1979589689 cites W2013645250 @default.
- W1979589689 cites W2016244543 @default.
- W1979589689 cites W2016635224 @default.
- W1979589689 cites W2016660677 @default.
- W1979589689 cites W2022490111 @default.
- W1979589689 cites W2025577666 @default.
- W1979589689 cites W2029232177 @default.
- W1979589689 cites W2030751218 @default.
- W1979589689 cites W2045633034 @default.
- W1979589689 cites W2056908956 @default.
- W1979589689 cites W2066525901 @default.
- W1979589689 cites W2067552820 @default.
- W1979589689 cites W2076214212 @default.
- W1979589689 cites W2090630906 @default.
- W1979589689 cites W2092440907 @default.
- W1979589689 cites W2094347820 @default.
- W1979589689 cites W2100724786 @default.
- W1979589689 cites W2103393785 @default.
- W1979589689 cites W2104505172 @default.
- W1979589689 cites W2105541172 @default.
- W1979589689 cites W2106261260 @default.
- W1979589689 cites W2107748267 @default.
- W1979589689 cites W2110247921 @default.
- W1979589689 cites W2112011323 @default.
- W1979589689 cites W2116146623 @default.
- W1979589689 cites W2116649573 @default.
- W1979589689 cites W2117649346 @default.
- W1979589689 cites W2123574770 @default.
- W1979589689 cites W2125295858 @default.
- W1979589689 cites W2125823313 @default.
- W1979589689 cites W2135382170 @default.
- W1979589689 cites W2142106331 @default.
- W1979589689 cites W2148601705 @default.
- W1979589689 cites W2148993214 @default.
- W1979589689 cites W2156984202 @default.
- W1979589689 cites W2157107537 @default.
- W1979589689 cites W2166459776 @default.
- W1979589689 cites W2167284846 @default.
- W1979589689 cites W4238669448 @default.
- W1979589689 cites W91786246 @default.
- W1979589689 doi "https://doi.org/10.1016/j.neuron.2005.05.023" @default.
- W1979589689 hasPubMedId "https://pubmed.ncbi.nlm.nih.gov/15953423" @default.
- W1979589689 hasPublicationYear "2005" @default.
- W1979589689 type Work @default.
- W1979589689 sameAs 1979589689 @default.
- W1979589689 citedByCount "387" @default.
- W1979589689 countsByYear W19795896892012 @default.
- W1979589689 countsByYear W19795896892013 @default.
- W1979589689 countsByYear W19795896892014 @default.
- W1979589689 countsByYear W19795896892015 @default.
- W1979589689 countsByYear W19795896892016 @default.
- W1979589689 countsByYear W19795896892017 @default.
- W1979589689 countsByYear W19795896892018 @default.
- W1979589689 countsByYear W19795896892019 @default.
- W1979589689 countsByYear W19795896892020 @default.
- W1979589689 countsByYear W19795896892021 @default.
- W1979589689 countsByYear W19795896892022 @default.
- W1979589689 countsByYear W19795896892023 @default.
- W1979589689 crossrefType "journal-article" @default.
- W1979589689 hasAuthorship W1979589689A5000121498 @default.
- W1979589689 hasAuthorship W1979589689A5002342124 @default.
- W1979589689 hasAuthorship W1979589689A5012502944 @default.
- W1979589689 hasAuthorship W1979589689A5025929350 @default.
- W1979589689 hasAuthorship W1979589689A5043516060 @default.
- W1979589689 hasAuthorship W1979589689A5067061176 @default.
- W1979589689 hasBestOaLocation W19795896891 @default.
- W1979589689 hasConcept C118552586 @default.
- W1979589689 hasConcept C142724271 @default.
- W1979589689 hasConcept C15744967 @default.