Matches in SemOpenAlex for { <https://semopenalex.org/work/W1979626518> ?p ?o ?g. }
Showing items 1 to 76 of
76
with 100 items per page.
- W1979626518 endingPage "135054" @default.
- W1979626518 startingPage "135054" @default.
- W1979626518 abstract "Wireless sensor networks (WSNs) are tightly linked with the practical environment in which the sensors are deployed. Sensor positioning is a pivotal part of main location-dependent applications that utilize sensornets. The global topology of the network is important to both sensor network applications and the implementation of networking functionalities. This paper studies the topology discovery with an emphasis on boundary recognition in a sensor network. A large mass of sensor nodes are supposed to scatter in a geometric region, with nearby nodes communicating with each other directly. This paper is thus designed to detect the holes in the topological architecture of sensornets only by connectivity information. Existent edges determination methods hold the high costs as assumptions. Without the help of a large amount of uniformly deployed seed nodes, those schemes fail in anisotropic WSNs with possible holes. To address this issue, we propose a solution, named PPA based on Poincare-Perelman Theorem, to judge whether there are holes in WSNs-monitored areas. Our solution can properly detect holes on the topological surfaces and connect them into meaningful boundary cycles. The judging method has also been rigorously proved to be appropriate for continuous geometric domains as well as discrete domains. Extensive simulations have been shown that the algorithm even enables networks with low density to produce good results." @default.
- W1979626518 created "2016-06-24" @default.
- W1979626518 creator A5003799076 @default.
- W1979626518 creator A5006619384 @default.
- W1979626518 creator A5077947981 @default.
- W1979626518 creator A5083108695 @default.
- W1979626518 date "2012-10-01" @default.
- W1979626518 modified "2023-10-14" @default.
- W1979626518 title "Holes Detection in Anisotropic Sensornets: Topological Methods" @default.
- W1979626518 cites W1985866492 @default.
- W1979626518 cites W2101963262 @default.
- W1979626518 cites W2136277131 @default.
- W1979626518 cites W2150388519 @default.
- W1979626518 cites W2154384930 @default.
- W1979626518 cites W2156689181 @default.
- W1979626518 cites W2169528473 @default.
- W1979626518 cites W4241752267 @default.
- W1979626518 doi "https://doi.org/10.1155/2012/135054" @default.
- W1979626518 hasPublicationYear "2012" @default.
- W1979626518 type Work @default.
- W1979626518 sameAs 1979626518 @default.
- W1979626518 citedByCount "62" @default.
- W1979626518 countsByYear W19796265182014 @default.
- W1979626518 countsByYear W19796265182015 @default.
- W1979626518 countsByYear W19796265182016 @default.
- W1979626518 countsByYear W19796265182017 @default.
- W1979626518 countsByYear W19796265182018 @default.
- W1979626518 countsByYear W19796265182019 @default.
- W1979626518 countsByYear W19796265182020 @default.
- W1979626518 countsByYear W19796265182021 @default.
- W1979626518 crossrefType "journal-article" @default.
- W1979626518 hasAuthorship W1979626518A5003799076 @default.
- W1979626518 hasAuthorship W1979626518A5006619384 @default.
- W1979626518 hasAuthorship W1979626518A5077947981 @default.
- W1979626518 hasAuthorship W1979626518A5083108695 @default.
- W1979626518 hasBestOaLocation W19796265181 @default.
- W1979626518 hasConcept C114614502 @default.
- W1979626518 hasConcept C120314980 @default.
- W1979626518 hasConcept C134306372 @default.
- W1979626518 hasConcept C184720557 @default.
- W1979626518 hasConcept C24590314 @default.
- W1979626518 hasConcept C31258907 @default.
- W1979626518 hasConcept C33923547 @default.
- W1979626518 hasConcept C41008148 @default.
- W1979626518 hasConcept C62354387 @default.
- W1979626518 hasConceptScore W1979626518C114614502 @default.
- W1979626518 hasConceptScore W1979626518C120314980 @default.
- W1979626518 hasConceptScore W1979626518C134306372 @default.
- W1979626518 hasConceptScore W1979626518C184720557 @default.
- W1979626518 hasConceptScore W1979626518C24590314 @default.
- W1979626518 hasConceptScore W1979626518C31258907 @default.
- W1979626518 hasConceptScore W1979626518C33923547 @default.
- W1979626518 hasConceptScore W1979626518C41008148 @default.
- W1979626518 hasConceptScore W1979626518C62354387 @default.
- W1979626518 hasFunder F4320321001 @default.
- W1979626518 hasIssue "10" @default.
- W1979626518 hasLocation W19796265181 @default.
- W1979626518 hasOpenAccess W1979626518 @default.
- W1979626518 hasPrimaryLocation W19796265181 @default.
- W1979626518 hasRelatedWork W1485627940 @default.
- W1979626518 hasRelatedWork W1596201972 @default.
- W1979626518 hasRelatedWork W1598943142 @default.
- W1979626518 hasRelatedWork W1986253068 @default.
- W1979626518 hasRelatedWork W2078600672 @default.
- W1979626518 hasRelatedWork W2130966263 @default.
- W1979626518 hasRelatedWork W2152433827 @default.
- W1979626518 hasRelatedWork W2160425906 @default.
- W1979626518 hasRelatedWork W2385146268 @default.
- W1979626518 hasRelatedWork W4313054100 @default.
- W1979626518 hasVolume "8" @default.
- W1979626518 isParatext "false" @default.
- W1979626518 isRetracted "false" @default.
- W1979626518 magId "1979626518" @default.
- W1979626518 workType "article" @default.