Matches in SemOpenAlex for { <https://semopenalex.org/work/W1979777795> ?p ?o ?g. }
- W1979777795 endingPage "140" @default.
- W1979777795 startingPage "132" @default.
- W1979777795 abstract "Learning from data is a very attractive alternative to “manually” learning. Therefore, in the last decade the use of machine learning has spread rapidly throughout computer science and beyond. This approach, supported on advanced statistics analysis, is usually known as Data Mining (DM) and has been applied successfully in different knowledge domains. In the present study, we show that DM can make a great contribution in solving complex problems in civil engineering, namely in the field of geotechnical engineering. Particularly, the high learning capabilities of Support Vector Machines (SVMs) algorithm, characterized by it flexibility and non-linear capabilities, were applied in the prediction of the Uniaxial Compressive Strength (UCS) of Jet Grouting (JG) samples directly extracted from JG columns, usually known as soilcrete. JG technology is a soft-soil improvement method worldwide applied, extremely versatile and economically attractive when compared with other methods. However, even after many years of experience still lacks of accurate methods for JG columns design. Accordingly, in the present paper a novel approach (based on SVM algorithm) for UCS prediction of soilcrete mixtures is proposed supported on 472 results collected from different geotechnical works. Furthermore, a global sensitivity analysis is applied in order to explain and extract understandable knowledge from the proposed model. Such analysis allows one to identify the key variables in UCS prediction and to measure its effect. Finally, a tentative step toward a development of UCS prediction based on laboratory studies is presented and discussed." @default.
- W1979777795 created "2016-06-24" @default.
- W1979777795 creator A5021727213 @default.
- W1979777795 creator A5062036279 @default.
- W1979777795 creator A5077829125 @default.
- W1979777795 date "2014-01-01" @default.
- W1979777795 modified "2023-10-16" @default.
- W1979777795 title "Support vector machines applied to uniaxial compressive strength prediction of jet grouting columns" @default.
- W1979777795 cites W1588486985 @default.
- W1979777795 cites W1964357740 @default.
- W1979777795 cites W1964394164 @default.
- W1979777795 cites W1972550919 @default.
- W1979777795 cites W1976307734 @default.
- W1979777795 cites W1976405057 @default.
- W1979777795 cites W1983735453 @default.
- W1979777795 cites W1999338295 @default.
- W1979777795 cites W2006538047 @default.
- W1979777795 cites W2009702729 @default.
- W1979777795 cites W2022887954 @default.
- W1979777795 cites W2032566663 @default.
- W1979777795 cites W2033626294 @default.
- W1979777795 cites W2042287734 @default.
- W1979777795 cites W2062586529 @default.
- W1979777795 cites W2066924236 @default.
- W1979777795 cites W2076563147 @default.
- W1979777795 cites W2081626793 @default.
- W1979777795 cites W2091349963 @default.
- W1979777795 cites W2096994080 @default.
- W1979777795 cites W2130132521 @default.
- W1979777795 cites W2146662923 @default.
- W1979777795 cites W2157480255 @default.
- W1979777795 cites W2158585626 @default.
- W1979777795 cites W2158994553 @default.
- W1979777795 cites W2161336914 @default.
- W1979777795 cites W2333408436 @default.
- W1979777795 cites W4239510810 @default.
- W1979777795 doi "https://doi.org/10.1016/j.compgeo.2013.08.010" @default.
- W1979777795 hasPublicationYear "2014" @default.
- W1979777795 type Work @default.
- W1979777795 sameAs 1979777795 @default.
- W1979777795 citedByCount "89" @default.
- W1979777795 countsByYear W19797777952013 @default.
- W1979777795 countsByYear W19797777952014 @default.
- W1979777795 countsByYear W19797777952015 @default.
- W1979777795 countsByYear W19797777952016 @default.
- W1979777795 countsByYear W19797777952017 @default.
- W1979777795 countsByYear W19797777952018 @default.
- W1979777795 countsByYear W19797777952019 @default.
- W1979777795 countsByYear W19797777952020 @default.
- W1979777795 countsByYear W19797777952021 @default.
- W1979777795 countsByYear W19797777952022 @default.
- W1979777795 countsByYear W19797777952023 @default.
- W1979777795 crossrefType "journal-article" @default.
- W1979777795 hasAuthorship W1979777795A5021727213 @default.
- W1979777795 hasAuthorship W1979777795A5062036279 @default.
- W1979777795 hasAuthorship W1979777795A5077829125 @default.
- W1979777795 hasConcept C105795698 @default.
- W1979777795 hasConcept C119857082 @default.
- W1979777795 hasConcept C119947313 @default.
- W1979777795 hasConcept C12267149 @default.
- W1979777795 hasConcept C124101348 @default.
- W1979777795 hasConcept C127413603 @default.
- W1979777795 hasConcept C146978453 @default.
- W1979777795 hasConcept C154945302 @default.
- W1979777795 hasConcept C159985019 @default.
- W1979777795 hasConcept C187320778 @default.
- W1979777795 hasConcept C192562407 @default.
- W1979777795 hasConcept C202444582 @default.
- W1979777795 hasConcept C21200559 @default.
- W1979777795 hasConcept C24326235 @default.
- W1979777795 hasConcept C2780009758 @default.
- W1979777795 hasConcept C2780598303 @default.
- W1979777795 hasConcept C30407753 @default.
- W1979777795 hasConcept C33923547 @default.
- W1979777795 hasConcept C41008148 @default.
- W1979777795 hasConcept C9652623 @default.
- W1979777795 hasConceptScore W1979777795C105795698 @default.
- W1979777795 hasConceptScore W1979777795C119857082 @default.
- W1979777795 hasConceptScore W1979777795C119947313 @default.
- W1979777795 hasConceptScore W1979777795C12267149 @default.
- W1979777795 hasConceptScore W1979777795C124101348 @default.
- W1979777795 hasConceptScore W1979777795C127413603 @default.
- W1979777795 hasConceptScore W1979777795C146978453 @default.
- W1979777795 hasConceptScore W1979777795C154945302 @default.
- W1979777795 hasConceptScore W1979777795C159985019 @default.
- W1979777795 hasConceptScore W1979777795C187320778 @default.
- W1979777795 hasConceptScore W1979777795C192562407 @default.
- W1979777795 hasConceptScore W1979777795C202444582 @default.
- W1979777795 hasConceptScore W1979777795C21200559 @default.
- W1979777795 hasConceptScore W1979777795C24326235 @default.
- W1979777795 hasConceptScore W1979777795C2780009758 @default.
- W1979777795 hasConceptScore W1979777795C2780598303 @default.
- W1979777795 hasConceptScore W1979777795C30407753 @default.
- W1979777795 hasConceptScore W1979777795C33923547 @default.
- W1979777795 hasConceptScore W1979777795C41008148 @default.
- W1979777795 hasConceptScore W1979777795C9652623 @default.
- W1979777795 hasLocation W19797777951 @default.
- W1979777795 hasOpenAccess W1979777795 @default.