Matches in SemOpenAlex for { <https://semopenalex.org/work/W1979867032> ?p ?o ?g. }
- W1979867032 endingPage "1004" @default.
- W1979867032 startingPage "995" @default.
- W1979867032 abstract "Organic semiconductors (OSCs) have recently received significant attention for their potential use in photovoltaic, light emitting diode, and field effect transistor devices. Part of the appeal of OSCs is the disordered, amorphous nature of these materials, which makes them more flexible and easier to process than their inorganic counterparts. In addition to their technological applications, OSCs provide an attractive laboratory for examining the chemistry of heterogeneous systems. Because OSCs are both electrically and optically active, researchers have access to a wealth of electrical and spectroscopic probes that are sensitive to a variety of localized electronic states in these materials. In this Account, we review the basic concepts in first-principles modeling of the electronic properties of disordered OSCs. There are three theoretical ingredients in the computational recipe. First, Marcus theory of nonadiabatic electron transfer (ET) provides a direct link between energy and kinetics. Second, constrained density functional theory (CDFT) forms the basis for an ab initio model of the diabatic charge states required in ET. Finally, quantum mechanical/molecular mechanical (QM/MM) techniques allow us to incorporate the influence of the heterogeneous environment on the diabatic states. As an illustration, we apply these ideas to the small molecule OSC tris(8- hydroxyquinolinato)aluminum (Alq3). In films, Alq3 can possess a large degree of short-range order, placing it in the middle of the order−disorder spectrum (in this spectrum, pure crystals represent one extreme and totally amorphous structures the opposite extreme). We show that the QM/MM recipe reproduces the transport gap, charge carrier hopping integrals, optical spectra, and reorganization energies of Alq3 in quantitative agreement with available experiments. However, one cannot specify any of these quantities accurately with a single number. Instead, one must characterize each property by a distribution that reflects the influence of the heterogeneous environment on the electronic states involved. For example, the hopping integral between a given pair of Alq3 molecules can vary by as much as a factor of 5 on the nanosecond timescale, but the integrals for two different pairs can easily differ by a factor of 100. To accurately predict mesoscopic properties such as carrier mobilities based on these calculations, researchers must account for the dynamic range of the microscopic inputs, rather than just their average values. Thus, we find that many of the computational tools required to characterize these materials are now available. As we continue to improve this computational toolbox, we envision a future scenario in which researchers can use basic information about OSC deposition to simulate device operation on the atomic scale. This type of simulation could allow researchers to obtain data that not only aids in the interpretation of experimental results but also guides the design of more efficient devices." @default.
- W1979867032 created "2016-06-24" @default.
- W1979867032 creator A5012778333 @default.
- W1979867032 creator A5065810600 @default.
- W1979867032 creator A5066175261 @default.
- W1979867032 creator A5082653947 @default.
- W1979867032 creator A5086762702 @default.
- W1979867032 date "2010-05-05" @default.
- W1979867032 modified "2023-10-18" @default.
- W1979867032 title "Electronic Properties of Disordered Organic Semiconductors via QM/MM Simulations" @default.
- W1979867032 cites W1645649260 @default.
- W1979867032 cites W1966078827 @default.
- W1979867032 cites W1968114764 @default.
- W1979867032 cites W1969982822 @default.
- W1979867032 cites W1973307721 @default.
- W1979867032 cites W1973435037 @default.
- W1979867032 cites W1976849993 @default.
- W1979867032 cites W1979020922 @default.
- W1979867032 cites W1986368771 @default.
- W1979867032 cites W1986958445 @default.
- W1979867032 cites W2000024623 @default.
- W1979867032 cites W2001270915 @default.
- W1979867032 cites W2002233718 @default.
- W1979867032 cites W2003679741 @default.
- W1979867032 cites W2010420954 @default.
- W1979867032 cites W2015197535 @default.
- W1979867032 cites W2022614861 @default.
- W1979867032 cites W2026838096 @default.
- W1979867032 cites W2030460067 @default.
- W1979867032 cites W2032574950 @default.
- W1979867032 cites W2035460800 @default.
- W1979867032 cites W2047145850 @default.
- W1979867032 cites W2050056663 @default.
- W1979867032 cites W2055896073 @default.
- W1979867032 cites W2056537004 @default.
- W1979867032 cites W2057653269 @default.
- W1979867032 cites W2062917591 @default.
- W1979867032 cites W2064521809 @default.
- W1979867032 cites W2072557921 @default.
- W1979867032 cites W2078722240 @default.
- W1979867032 cites W2106711539 @default.
- W1979867032 cites W2112594863 @default.
- W1979867032 cites W2120901082 @default.
- W1979867032 cites W2141517543 @default.
- W1979867032 cites W2162166182 @default.
- W1979867032 cites W2165898566 @default.
- W1979867032 cites W2170037368 @default.
- W1979867032 doi "https://doi.org/10.1021/ar900246s" @default.
- W1979867032 hasPubMedId "https://pubmed.ncbi.nlm.nih.gov/20443554" @default.
- W1979867032 hasPublicationYear "2010" @default.
- W1979867032 type Work @default.
- W1979867032 sameAs 1979867032 @default.
- W1979867032 citedByCount "90" @default.
- W1979867032 countsByYear W19798670322012 @default.
- W1979867032 countsByYear W19798670322013 @default.
- W1979867032 countsByYear W19798670322014 @default.
- W1979867032 countsByYear W19798670322015 @default.
- W1979867032 countsByYear W19798670322016 @default.
- W1979867032 countsByYear W19798670322017 @default.
- W1979867032 countsByYear W19798670322018 @default.
- W1979867032 countsByYear W19798670322019 @default.
- W1979867032 countsByYear W19798670322020 @default.
- W1979867032 countsByYear W19798670322021 @default.
- W1979867032 countsByYear W19798670322022 @default.
- W1979867032 countsByYear W19798670322023 @default.
- W1979867032 crossrefType "journal-article" @default.
- W1979867032 hasAuthorship W1979867032A5012778333 @default.
- W1979867032 hasAuthorship W1979867032A5065810600 @default.
- W1979867032 hasAuthorship W1979867032A5066175261 @default.
- W1979867032 hasAuthorship W1979867032A5082653947 @default.
- W1979867032 hasAuthorship W1979867032A5086762702 @default.
- W1979867032 hasBestOaLocation W19798670322 @default.
- W1979867032 hasConcept C108225325 @default.
- W1979867032 hasConcept C109663097 @default.
- W1979867032 hasConcept C115852967 @default.
- W1979867032 hasConcept C121332964 @default.
- W1979867032 hasConcept C123057669 @default.
- W1979867032 hasConcept C147597530 @default.
- W1979867032 hasConcept C148898269 @default.
- W1979867032 hasConcept C152365726 @default.
- W1979867032 hasConcept C159467904 @default.
- W1979867032 hasConcept C171250308 @default.
- W1979867032 hasConcept C185592680 @default.
- W1979867032 hasConcept C192562407 @default.
- W1979867032 hasConcept C32909587 @default.
- W1979867032 hasConcept C49040817 @default.
- W1979867032 hasConcept C62520636 @default.
- W1979867032 hasConcept C89169741 @default.
- W1979867032 hasConcept C93391505 @default.
- W1979867032 hasConcept C94003879 @default.
- W1979867032 hasConceptScore W1979867032C108225325 @default.
- W1979867032 hasConceptScore W1979867032C109663097 @default.
- W1979867032 hasConceptScore W1979867032C115852967 @default.
- W1979867032 hasConceptScore W1979867032C121332964 @default.
- W1979867032 hasConceptScore W1979867032C123057669 @default.
- W1979867032 hasConceptScore W1979867032C147597530 @default.
- W1979867032 hasConceptScore W1979867032C148898269 @default.
- W1979867032 hasConceptScore W1979867032C152365726 @default.