Matches in SemOpenAlex for { <https://semopenalex.org/work/W1979928432> ?p ?o ?g. }
Showing items 1 to 67 of
67
with 100 items per page.
- W1979928432 abstract "Synthesizing high-level semantic knowledge from low-level sensor data is an important problem in many sensor network applications. Programming a network to perform such synthesis in situ is especially difficult due to the stringent resource constraints, unreliable wireless communication, and complex distributed algorithms and network protocols required to manipulate the data. Recently, a declarative programming language called Snlog [5] has been developed to address this problem. However, statistical reasoning for modeling noise in the context of sensor networks has not been addressed in Snlog. In this paper, we develop a methodology based on the PRISM [36] framework, which integrates logical and statistical reasoning, for specifying sensor network programs that deal with noisy data and tolerate faults in the network. The relationship between high-level (synthesized) and low-level (observed) data is captured by logical rules, while statistical models are used to specify computations in the presence of noise and faults. We illustrate our methodology with three examples: (i) estimating temperature at various points in a region, (ii) evaluating the trajectory of an object observed by a sensor network, based on the Hidden Markov Model, and (iii) evaluating most reliable communication paths between sensor nodes. We analyze the results of simulations as well as an experimental deployment to evaluate the practical feasibility of our approach." @default.
- W1979928432 created "2016-06-24" @default.
- W1979928432 creator A5005648942 @default.
- W1979928432 creator A5036385698 @default.
- W1979928432 creator A5055338447 @default.
- W1979928432 creator A5056708608 @default.
- W1979928432 creator A5062218359 @default.
- W1979928432 date "2008-11-05" @default.
- W1979928432 modified "2023-10-14" @default.
- W1979928432 title "A methodology for in-network evaluation of integrated logical-statistical models" @default.
- W1979928432 cites W1493149182 @default.
- W1979928432 cites W1530235063 @default.
- W1979928432 cites W1965552673 @default.
- W1979928432 cites W1977970897 @default.
- W1979928432 cites W2073904762 @default.
- W1979928432 cites W2078843353 @default.
- W1979928432 cites W2090761873 @default.
- W1979928432 cites W2103213283 @default.
- W1979928432 cites W2106898966 @default.
- W1979928432 cites W2110048879 @default.
- W1979928432 cites W2110936068 @default.
- W1979928432 cites W2117520883 @default.
- W1979928432 cites W2139616859 @default.
- W1979928432 cites W2144424895 @default.
- W1979928432 cites W2147326408 @default.
- W1979928432 cites W2162460825 @default.
- W1979928432 cites W2168720188 @default.
- W1979928432 cites W2171427043 @default.
- W1979928432 cites W2914728526 @default.
- W1979928432 cites W3000438703 @default.
- W1979928432 cites W4210597212 @default.
- W1979928432 cites W4242450751 @default.
- W1979928432 cites W4253573210 @default.
- W1979928432 doi "https://doi.org/10.1145/1460412.1460432" @default.
- W1979928432 hasPublicationYear "2008" @default.
- W1979928432 type Work @default.
- W1979928432 sameAs 1979928432 @default.
- W1979928432 citedByCount "10" @default.
- W1979928432 countsByYear W19799284322012 @default.
- W1979928432 countsByYear W19799284322014 @default.
- W1979928432 countsByYear W19799284322017 @default.
- W1979928432 countsByYear W19799284322018 @default.
- W1979928432 crossrefType "proceedings-article" @default.
- W1979928432 hasAuthorship W1979928432A5005648942 @default.
- W1979928432 hasAuthorship W1979928432A5036385698 @default.
- W1979928432 hasAuthorship W1979928432A5055338447 @default.
- W1979928432 hasAuthorship W1979928432A5056708608 @default.
- W1979928432 hasAuthorship W1979928432A5062218359 @default.
- W1979928432 hasConcept C41008148 @default.
- W1979928432 hasConceptScore W1979928432C41008148 @default.
- W1979928432 hasLocation W19799284321 @default.
- W1979928432 hasOpenAccess W1979928432 @default.
- W1979928432 hasPrimaryLocation W19799284321 @default.
- W1979928432 hasRelatedWork W2093578348 @default.
- W1979928432 hasRelatedWork W2350741829 @default.
- W1979928432 hasRelatedWork W2358668433 @default.
- W1979928432 hasRelatedWork W2376932109 @default.
- W1979928432 hasRelatedWork W2382290278 @default.
- W1979928432 hasRelatedWork W2390279801 @default.
- W1979928432 hasRelatedWork W2748952813 @default.
- W1979928432 hasRelatedWork W2766271392 @default.
- W1979928432 hasRelatedWork W2899084033 @default.
- W1979928432 hasRelatedWork W3004735627 @default.
- W1979928432 isParatext "false" @default.
- W1979928432 isRetracted "false" @default.
- W1979928432 magId "1979928432" @default.
- W1979928432 workType "article" @default.