Matches in SemOpenAlex for { <https://semopenalex.org/work/W1980183723> ?p ?o ?g. }
Showing items 1 to 96 of
96
with 100 items per page.
- W1980183723 abstract "Most machine learning algorithms need to handle large datasets. This feature often leads to limitations on processing time and memory. The Expectation-Maximization (EM) is one of such algorithms, which is used to train one of the most commonly used parametric statistical models, the Gaussian Mixture Models (GMM). All steps of the algorithm are potentially parallelizable once they iterate over the entire data set. In this work, we propose a parallel implementation of EM for training GMM using CUDA cores. Experimentation scenario consists of five different datasets and four metrics. Results show a speedup of 12.7 if compared to sequential version. With coalesced access to CUDA global memory and shared memory usage, we have achieved up to 99.4% of actual occupancy, regardless the number of Gaussians considered." @default.
- W1980183723 created "2016-06-24" @default.
- W1980183723 creator A5012612879 @default.
- W1980183723 creator A5024617502 @default.
- W1980183723 creator A5043898754 @default.
- W1980183723 creator A5048968559 @default.
- W1980183723 creator A5066321781 @default.
- W1980183723 date "2014-10-01" @default.
- W1980183723 modified "2023-10-18" @default.
- W1980183723 title "Multi-kernel approach to Parallelization of EM Algorithm for GMM Training" @default.
- W1980183723 cites W140742084 @default.
- W1980183723 cites W1971852886 @default.
- W1980183723 cites W2007486177 @default.
- W1980183723 cites W2022834271 @default.
- W1980183723 cites W2047815716 @default.
- W1980183723 cites W2052384514 @default.
- W1980183723 cites W2072935211 @default.
- W1980183723 cites W2074842062 @default.
- W1980183723 cites W2113911479 @default.
- W1980183723 cites W2138924491 @default.
- W1980183723 cites W2170847085 @default.
- W1980183723 cites W2503135644 @default.
- W1980183723 cites W2602579275 @default.
- W1980183723 doi "https://doi.org/10.1109/bracis.2014.38" @default.
- W1980183723 hasPublicationYear "2014" @default.
- W1980183723 type Work @default.
- W1980183723 sameAs 1980183723 @default.
- W1980183723 citedByCount "5" @default.
- W1980183723 countsByYear W19801837232015 @default.
- W1980183723 countsByYear W19801837232017 @default.
- W1980183723 countsByYear W19801837232018 @default.
- W1980183723 countsByYear W19801837232019 @default.
- W1980183723 countsByYear W19801837232021 @default.
- W1980183723 crossrefType "proceedings-article" @default.
- W1980183723 hasAuthorship W1980183723A5012612879 @default.
- W1980183723 hasAuthorship W1980183723A5024617502 @default.
- W1980183723 hasAuthorship W1980183723A5043898754 @default.
- W1980183723 hasAuthorship W1980183723A5048968559 @default.
- W1980183723 hasAuthorship W1980183723A5066321781 @default.
- W1980183723 hasConcept C105795698 @default.
- W1980183723 hasConcept C11413529 @default.
- W1980183723 hasConcept C114614502 @default.
- W1980183723 hasConcept C119857082 @default.
- W1980183723 hasConcept C138885662 @default.
- W1980183723 hasConcept C148047603 @default.
- W1980183723 hasConcept C154945302 @default.
- W1980183723 hasConcept C173608175 @default.
- W1980183723 hasConcept C177264268 @default.
- W1980183723 hasConcept C182081679 @default.
- W1980183723 hasConcept C199360897 @default.
- W1980183723 hasConcept C2776401178 @default.
- W1980183723 hasConcept C2778119891 @default.
- W1980183723 hasConcept C33923547 @default.
- W1980183723 hasConcept C41008148 @default.
- W1980183723 hasConcept C41895202 @default.
- W1980183723 hasConcept C49781872 @default.
- W1980183723 hasConcept C61224824 @default.
- W1980183723 hasConcept C68339613 @default.
- W1980183723 hasConcept C74193536 @default.
- W1980183723 hasConceptScore W1980183723C105795698 @default.
- W1980183723 hasConceptScore W1980183723C11413529 @default.
- W1980183723 hasConceptScore W1980183723C114614502 @default.
- W1980183723 hasConceptScore W1980183723C119857082 @default.
- W1980183723 hasConceptScore W1980183723C138885662 @default.
- W1980183723 hasConceptScore W1980183723C148047603 @default.
- W1980183723 hasConceptScore W1980183723C154945302 @default.
- W1980183723 hasConceptScore W1980183723C173608175 @default.
- W1980183723 hasConceptScore W1980183723C177264268 @default.
- W1980183723 hasConceptScore W1980183723C182081679 @default.
- W1980183723 hasConceptScore W1980183723C199360897 @default.
- W1980183723 hasConceptScore W1980183723C2776401178 @default.
- W1980183723 hasConceptScore W1980183723C2778119891 @default.
- W1980183723 hasConceptScore W1980183723C33923547 @default.
- W1980183723 hasConceptScore W1980183723C41008148 @default.
- W1980183723 hasConceptScore W1980183723C41895202 @default.
- W1980183723 hasConceptScore W1980183723C49781872 @default.
- W1980183723 hasConceptScore W1980183723C61224824 @default.
- W1980183723 hasConceptScore W1980183723C68339613 @default.
- W1980183723 hasConceptScore W1980183723C74193536 @default.
- W1980183723 hasLocation W19801837231 @default.
- W1980183723 hasOpenAccess W1980183723 @default.
- W1980183723 hasPrimaryLocation W19801837231 @default.
- W1980183723 hasRelatedWork W122715520 @default.
- W1980183723 hasRelatedWork W1965760575 @default.
- W1980183723 hasRelatedWork W1980183723 @default.
- W1980183723 hasRelatedWork W2143593481 @default.
- W1980183723 hasRelatedWork W2329155633 @default.
- W1980183723 hasRelatedWork W2347956016 @default.
- W1980183723 hasRelatedWork W2396364535 @default.
- W1980183723 hasRelatedWork W2794923745 @default.
- W1980183723 hasRelatedWork W2923029190 @default.
- W1980183723 hasRelatedWork W3159529979 @default.
- W1980183723 isParatext "false" @default.
- W1980183723 isRetracted "false" @default.
- W1980183723 magId "1980183723" @default.
- W1980183723 workType "article" @default.