Matches in SemOpenAlex for { <https://semopenalex.org/work/W1980308067> ?p ?o ?g. }
- W1980308067 endingPage "322" @default.
- W1980308067 startingPage "313" @default.
- W1980308067 abstract "Objectives The application of attenuation correction for combined magnetic resonance/positron emission tomography (MR/PET) systems is still a major challenge for accurate quantitative PET. Computed tomographic attenuation correction (CTAC) is the current clinical standard for PET/computed tomographic (CT) scans. Magnetic resonance, unlike CT, has no direct information about photon attenuation but, rather, proton densities. On combined MR/PET scanners, MR-based attenuation correction (MRAC) consists of assigning empirical attenuation coefficients to MR signal intensities. The objective of the current study was to evaluate the MRAC implemented on the combined MR/PET scanner versus the CTAC with the same PET data in an animal model. Materials and Methods Acquisition was performed using a clinically approved sequential MR/PET scanner (Philips Ingenuity TF). Computed tomographic and MR/PET images of 20 New Zealand White rabbits were retrospectively analyzed. The animals were positioned on a customized animal bed to avoid movement between the CT and MR/PET scanners. Positron emission tomographic images from both methods (MRAC and CTAC) were generated. Voxel-by-voxel and region-of-interest (ROI) analyses were performed to determine differences in standardized uptake values (SUV). Regions of interest were drawn on the coregistered CT images for the aorta, liver, kidney, spine, and soft tissue (muscle) and superimposed on the PET images. Results The voxel-by-voxel comparison of PET showed excellent correlation between MRAC and CTAC SUV values (R = 0.99; P < 0.0001). The mean of the difference of SUVs between all respective MRAC and CTAC voxels was −0.94% (absolute difference [AD] ± SD, −0.06 ± 0.30), confirming slight underestimation of MRAC. The ROI-based comparison similarly showed that MRAC SUV values were underestimated compared with CTAC SUV values. The mean difference between MRAC and CTAC for all ROIs was 10.8% (AD, −0.08 ± 0.06; R = 0.99; P < 0.0001) and −9.7% (AD, −0.15 ± 0.12; R = 0.99; P < 0.0001) for the SUV mean (SUVmean) and the SUV maximum (SUVmax), respectively. The highest differences were found in the spine (SUVmean −26.1% [−0.11]) and areas close to large bones such as the back muscles (SUVmean, −16.8% [−0.04]). Conclusions In this study, we have compared MRAC and CTAC methods for PET attenuation correction in an animal model. We have confirmed that the MRAC method implemented on a sequential MR/PET scanner underestimates PET values by less than 10% in most regions, except the areas containing or close to large bone structures such as the spine or the back muscles. Bone segmentation is therefore suggested to be included in the MR attenuation map to minimize the quantification error of MRAC methods compared with the clinical standard CTAC. Further clinical studies need to be carried out to validate the clinical use of MRAC." @default.
- W1980308067 created "2016-06-24" @default.
- W1980308067 creator A5000545244 @default.
- W1980308067 creator A5032381488 @default.
- W1980308067 creator A5072017477 @default.
- W1980308067 creator A5074727212 @default.
- W1980308067 creator A5083423467 @default.
- W1980308067 creator A5089434484 @default.
- W1980308067 creator A5091239458 @default.
- W1980308067 date "2013-05-01" @default.
- W1980308067 modified "2023-10-18" @default.
- W1980308067 title "Preclinical Evaluation of MR Attenuation Correction Versus CT Attenuation Correction on a Sequential Whole-Body MR/PET Scanner" @default.
- W1980308067 cites W1971098086 @default.
- W1980308067 cites W1982819530 @default.
- W1980308067 cites W1984473052 @default.
- W1980308067 cites W1999703228 @default.
- W1980308067 cites W2001950075 @default.
- W1980308067 cites W2002786571 @default.
- W1980308067 cites W2007769129 @default.
- W1980308067 cites W2012488578 @default.
- W1980308067 cites W2025445497 @default.
- W1980308067 cites W2037425560 @default.
- W1980308067 cites W2044764673 @default.
- W1980308067 cites W2047151644 @default.
- W1980308067 cites W2057743740 @default.
- W1980308067 cites W2057770669 @default.
- W1980308067 cites W2064276185 @default.
- W1980308067 cites W2071099732 @default.
- W1980308067 cites W2079070412 @default.
- W1980308067 cites W2089221057 @default.
- W1980308067 cites W2100495482 @default.
- W1980308067 cites W2105456967 @default.
- W1980308067 cites W2110338249 @default.
- W1980308067 cites W2126639779 @default.
- W1980308067 cites W2129292902 @default.
- W1980308067 cites W2142082007 @default.
- W1980308067 cites W2167157872 @default.
- W1980308067 doi "https://doi.org/10.1097/rli.0b013e31827a49ba" @default.
- W1980308067 hasPubMedCentralId "https://www.ncbi.nlm.nih.gov/pmc/articles/3638002" @default.
- W1980308067 hasPubMedId "https://pubmed.ncbi.nlm.nih.gov/23296082" @default.
- W1980308067 hasPublicationYear "2013" @default.
- W1980308067 type Work @default.
- W1980308067 sameAs 1980308067 @default.
- W1980308067 citedByCount "31" @default.
- W1980308067 countsByYear W19803080672013 @default.
- W1980308067 countsByYear W19803080672014 @default.
- W1980308067 countsByYear W19803080672015 @default.
- W1980308067 countsByYear W19803080672016 @default.
- W1980308067 countsByYear W19803080672017 @default.
- W1980308067 countsByYear W19803080672018 @default.
- W1980308067 countsByYear W19803080672019 @default.
- W1980308067 countsByYear W19803080672020 @default.
- W1980308067 countsByYear W19803080672022 @default.
- W1980308067 countsByYear W19803080672023 @default.
- W1980308067 crossrefType "journal-article" @default.
- W1980308067 hasAuthorship W1980308067A5000545244 @default.
- W1980308067 hasAuthorship W1980308067A5032381488 @default.
- W1980308067 hasAuthorship W1980308067A5072017477 @default.
- W1980308067 hasAuthorship W1980308067A5074727212 @default.
- W1980308067 hasAuthorship W1980308067A5083423467 @default.
- W1980308067 hasAuthorship W1980308067A5089434484 @default.
- W1980308067 hasAuthorship W1980308067A5091239458 @default.
- W1980308067 hasBestOaLocation W19803080672 @default.
- W1980308067 hasConcept C120665830 @default.
- W1980308067 hasConcept C121332964 @default.
- W1980308067 hasConcept C123688308 @default.
- W1980308067 hasConcept C126838900 @default.
- W1980308067 hasConcept C127077266 @default.
- W1980308067 hasConcept C143409427 @default.
- W1980308067 hasConcept C184652730 @default.
- W1980308067 hasConcept C2775842073 @default.
- W1980308067 hasConcept C2779751349 @default.
- W1980308067 hasConcept C2989005 @default.
- W1980308067 hasConcept C54170458 @default.
- W1980308067 hasConcept C71924100 @default.
- W1980308067 hasConceptScore W1980308067C120665830 @default.
- W1980308067 hasConceptScore W1980308067C121332964 @default.
- W1980308067 hasConceptScore W1980308067C123688308 @default.
- W1980308067 hasConceptScore W1980308067C126838900 @default.
- W1980308067 hasConceptScore W1980308067C127077266 @default.
- W1980308067 hasConceptScore W1980308067C143409427 @default.
- W1980308067 hasConceptScore W1980308067C184652730 @default.
- W1980308067 hasConceptScore W1980308067C2775842073 @default.
- W1980308067 hasConceptScore W1980308067C2779751349 @default.
- W1980308067 hasConceptScore W1980308067C2989005 @default.
- W1980308067 hasConceptScore W1980308067C54170458 @default.
- W1980308067 hasConceptScore W1980308067C71924100 @default.
- W1980308067 hasIssue "5" @default.
- W1980308067 hasLocation W19803080671 @default.
- W1980308067 hasLocation W19803080672 @default.
- W1980308067 hasLocation W19803080673 @default.
- W1980308067 hasLocation W19803080674 @default.
- W1980308067 hasOpenAccess W1980308067 @default.
- W1980308067 hasPrimaryLocation W19803080671 @default.
- W1980308067 hasRelatedWork W2057370939 @default.
- W1980308067 hasRelatedWork W2068373046 @default.
- W1980308067 hasRelatedWork W2091308077 @default.
- W1980308067 hasRelatedWork W2151919056 @default.