Matches in SemOpenAlex for { <https://semopenalex.org/work/W1980405919> ?p ?o ?g. }
Showing items 1 to 95 of
95
with 100 items per page.
- W1980405919 endingPage "29364" @default.
- W1980405919 startingPage "29357" @default.
- W1980405919 abstract "Cytosolic sulfotransferase (SULT)-catalyzed sulfation regulates biological activities of various biosignaling molecules and metabolizes hydroxyl-containing drugs and xenobiotics. The universal sulfuryl group donor for SULT-catalyzed sulfation is adenosine 3′-phosphate 5′-phosphosulfate (PAPS), whereas the reaction products are a sulfated product and adenosine 3′,5′-diphosphate (PAP). Although SULT-catalyzed kinetic mechanisms have been studied since the 1980s, they remain unclear. Human SULT1A1 is an important phase II drug-metabolizing enzyme. Previously, isotope exchange at equilibrium indicated steady-state ordered mechanism with PAPS and PAP binding to the free SULT1A1 (Tyapochkin, E., Cook, P. F., and Chen, G. (2008) Biochemistry 47, 11894–11899). On the basis of activation of SULT1A1 by para-nitrophenyl sulfate (pNPS), an ordered bypass mechanism has been proposed where pNPS sulfates PAP prior to its release from the E·PAP complex regenerating E·PAPS. Data are consistent with uncompetitive substrate inhibition by naphthol as a result of formation of the E·PAP·naphthol dead-end complex; formation of the complex is corroborated by naphthol/PAP double inhibition experiments. pNPS activation data demonstrate an apparent ping-pong behavior with pNPS adding to E·PAP, and competitive inhibition by naphthol consistent with formation of the E·PAP·naphthol complex. Exchange against forward reaction flux (PAPS plus naphthol) beginning with [35S]PAPS and generating [35S]naphthyl sulfate is also consistent with pNPS intercepting the E·PAP complex. Overall, data are consistent with the proposed ordered bypass mechanism. Cytosolic sulfotransferase (SULT)-catalyzed sulfation regulates biological activities of various biosignaling molecules and metabolizes hydroxyl-containing drugs and xenobiotics. The universal sulfuryl group donor for SULT-catalyzed sulfation is adenosine 3′-phosphate 5′-phosphosulfate (PAPS), whereas the reaction products are a sulfated product and adenosine 3′,5′-diphosphate (PAP). Although SULT-catalyzed kinetic mechanisms have been studied since the 1980s, they remain unclear. Human SULT1A1 is an important phase II drug-metabolizing enzyme. Previously, isotope exchange at equilibrium indicated steady-state ordered mechanism with PAPS and PAP binding to the free SULT1A1 (Tyapochkin, E., Cook, P. F., and Chen, G. (2008) Biochemistry 47, 11894–11899). On the basis of activation of SULT1A1 by para-nitrophenyl sulfate (pNPS), an ordered bypass mechanism has been proposed where pNPS sulfates PAP prior to its release from the E·PAP complex regenerating E·PAPS. Data are consistent with uncompetitive substrate inhibition by naphthol as a result of formation of the E·PAP·naphthol dead-end complex; formation of the complex is corroborated by naphthol/PAP double inhibition experiments. pNPS activation data demonstrate an apparent ping-pong behavior with pNPS adding to E·PAP, and competitive inhibition by naphthol consistent with formation of the E·PAP·naphthol complex. Exchange against forward reaction flux (PAPS plus naphthol) beginning with [35S]PAPS and generating [35S]naphthyl sulfate is also consistent with pNPS intercepting the E·PAP complex. Overall, data are consistent with the proposed ordered bypass mechanism. Sulfotransferases (SULTs) 3The abbreviations used are: SULTsulfotransferaseSULT1A1simple phenol sulfotransferasePAPSadenosine 3′-phosphate 5′-phosphosulfatePAPadenosine 3′,5′-diphosphatepNPpara-nitrophenolpNPSpara-nitrophenyl sulfate. 3The abbreviations used are: SULTsulfotransferaseSULT1A1simple phenol sulfotransferasePAPSadenosine 3′-phosphate 5′-phosphosulfatePAPadenosine 3′,5′-diphosphatepNPpara-nitrophenolpNPSpara-nitrophenyl sulfate. are phase II drug-metabolizing enzymes that catalyze the sulfation (sulfonation) of various hydroxyl-containing compounds: biosignaling molecules such as hydroxysteroid hormones, thyroid hormones, glucocorticoid hormones, bile acids, neurotransmitters, and hydroxyl-containing xenobiotics (1Chapman E. Best M.D. Hanson S.R. Wong C.H. Angew. Chem. Int. Ed. Engl. 2004; 43: 3526-3548Crossref PubMed Scopus (234) Google Scholar, 2Coughtrie M.W. Pharmacogenomics J. 2002; 2: 297-308Crossref PubMed Scopus (183) Google Scholar, 3Duffel M.W. Marshal A.D. McPhie P. Sharma V. Jakoby W.B. Drug Metab. Rev. 2001; 33: 369-395Crossref PubMed Scopus (68) Google Scholar, 4Gamage N. Barnett A. Hempel N. Duggleby R.G. Windmill K.F. Martin J.L. McManus M.E. Toxicol. Sci. 2006; 90: 5-22Crossref PubMed Scopus (485) Google Scholar, 5Glatt H. Engelke C.E. Pabel U. Teubner W. Jones A.L. Coughtrie M.W. Andrae U. Falany C.N. Meinl W. Toxicol. Lett. 2000; 112–113: 341-348Crossref PubMed Scopus (119) Google Scholar, 6Pacifici G.M. Int. J. Clin. Pharmacol. Ther. 2004; 42: 488-495Crossref PubMed Scopus (50) Google Scholar, 7Runge-Morris M. Kocarek T.A. Curr. Drug Metab. 2005; 6: 299-307Crossref PubMed Scopus (65) Google Scholar, 8Wang L.Q. James M.O. Curr. Drug Metab. 2006; 7: 83-104Crossref PubMed Scopus (113) Google Scholar). The sulfation proceeds as shown in reaction 1, where the sulfuryl group donor is adenosine 3′-phosphate 5′-phosphosulfate (PAPS), and the reaction products are adenosine 3′,5′-diphosphate (PAP) and a sulfated product. R-OH+PAPS⇀↽SULTsR-OSO3H+PAPOne of the main biological functions of SULTs is the regulation of various hormones (9Falany C.N. FASEB J. 1997; 11: 206-216Crossref PubMed Scopus (517) Google Scholar). Sulfation of xenobiotics is mainly associated with detoxification, biotransformation of a relatively hydrophobic xenobiotic into a more water-soluble sulfuric ester that is readily excreted. However, in some cases sulfation can also cause bioactivation of procarcinogens and promutagens, leading to possible toxic effects (10Coughtrie M.W. Johnston L.E. Drug Metab. Dispos. 2001; 29: 522-528PubMed Google Scholar, 11Glatt H. Chem.-Biol. Interact. 2000; 129: 141-170Crossref PubMed Scopus (302) Google Scholar).Studies of the SULTs kinetic mechanisms began to appear in the early 1980s (12Duffel M.W. Jakoby W.B. J. Biol. Chem. 1981; 256: 11123-11127Abstract Full Text PDF PubMed Google Scholar). Although many SULT isoforms have been isolated and characterized, their biological functions and catalytic mechanisms are still not well understood. Human phenol sulfotransferase (SULT1A1) is one of the major detoxifying enzymes for phenolic xenobiotics; it also catalyzes the sulfation of endogenous hydroxyl biosignaling molecules. It has very broad substrate specificity and high activity toward most phenolic compounds. SULT1A1 is also widely distributed in the human body. On the basis of isotope exchange at equilibrium, we showed that the kinetic mechanism for human SULT1A1 is steady-state-ordered with PAPS binding to the protein first, and PAP released last (13Tyapochkin E. Cook P.F. Chen G. Biochemistry. 2008; 47: 11894-11899Crossref PubMed Scopus (17) Google Scholar).Substrate inhibition by the hydroxyl substrate (sulfate acceptor) is a common feature of most cytosolic SULTs (14Barnett A.C. Tsvetanov S. Gamage N. Martin J.L. Duggleby R.G. McManus M.E. J. Biol. Chem. 2004; 279: 18799-18805Abstract Full Text Full Text PDF PubMed Scopus (47) Google Scholar, 15Miksits M. Maier-Salamon A. Aust S. Thalhammer T. Reznicek G. Kunert O. Haslinger E. Szekeres T. Jaeger W. Xenobiotica. 2005; 35: 1101-1119Crossref PubMed Scopus (80) Google Scholar). Inhibition of SULT1A1 has been observed by the substrate, naphthol. There are a number of different mechanisms that have been proposed for substrate inhibition, but the mechanism remains unclear. A ternary complex formed between substrate and the enzyme·PAP complex is the most likely possibility in an ordered mechanism, but binding to free enzyme is also possible (12Duffel M.W. Jakoby W.B. J. Biol. Chem. 1981; 256: 11123-11127Abstract Full Text PDF PubMed Google Scholar, 16Beckmann J.D. Burkett R.J. Sharpe M. Giannunzio L. Johnston D. Abbey S. Wyman A. Sung L. Biochim. Biophys. Acta. 2003; 1648: 134-139Crossref PubMed Scopus (9) Google Scholar). It is also possible, but unlikely, that substrate could bind to central complexes. In addition, binding of two substrate molecules to the active site has been proposed (4Gamage N. Barnett A. Hempel N. Duggleby R.G. Windmill K.F. Martin J.L. McManus M.E. Toxicol. Sci. 2006; 90: 5-22Crossref PubMed Scopus (485) Google Scholar, 14Barnett A.C. Tsvetanov S. Gamage N. Martin J.L. Duggleby R.G. McManus M.E. J. Biol. Chem. 2004; 279: 18799-18805Abstract Full Text Full Text PDF PubMed Scopus (47) Google Scholar). A SULT1A1 crystal structure was solved that showed two molecules of p-nitrophenol (pNP) in the same active site. However, computer modeling of this structure indicated that the active site could not easily accommodate even one molecule of a larger substrate such as β-estradiol (17Gamage N.U. Duggleby R.G. Barnett A.C. Tresillian M. Latham C.F. Liyou N.E. McManus M.E. Martin J.L. J. Biol. Chem. 2003; 278: 7655-7662Abstract Full Text Full Text PDF PubMed Scopus (139) Google Scholar). Other SULT crystal structures solved with the bound substrate indicated that only one substrate is possible in the crystal structure (18Kakuta Y. Pedersen L.G. Carter C.W. Negishi M. Pedersen L.C. Nat. Struct. Biol. 1997; 4: 904-908Crossref PubMed Scopus (230) Google Scholar, 19Pakhomova S. Buck J. Newcomer M.E. Protein Sci. 2005; 14: 176-182Crossref PubMed Scopus (9) Google Scholar, 20Pakhomova S. Kobayashi M. Buck J. Newcomer M.E. Nat. Struct. Biol. 2001; 8: 447-451Crossref PubMed Scopus (29) Google Scholar, 21Pakhomova S. Luz J.G. Kobayashi M. Mellman D. Buck J. Newcomer M.E. Acta Crystallogr. D Biol. Crystallogr. 2000; 56: 1641-1643Crossref PubMed Scopus (9) Google Scholar, 22Rehse P.H. Zhou M. Lin S.X. Biochem. J. 2002; 364: 165-171Crossref PubMed Scopus (69) Google Scholar, 23Shevtsov S. Petrotchenko E.V. Pedersen L.C. Negishi M. Environ. Health Perspect. 2003; 111: 884-888Crossref PubMed Scopus (56) Google Scholar).para-Nitrophenyl sulfate (pNPS) has been used for phenol SULTs enzyme activity assays (24Frame L.T. Ozawa S. Nowell S.A. Chou H.C. DeLongchamp R.R. Doerge D.R. Lang N.P. Kadlubar F.F. Drug Metab. Dispos. 2000; 28: 1063-1068PubMed Google Scholar, 25Chen G. Battaglia E. Senay C. Falany C.N. Radominska-Pandya A. Protein Sci. 1999; 8: 2151-2157Crossref PubMed Scopus (29) Google Scholar, 26Chen G. Rabjohn P.A. York J.L. Wooldridge C. Zhang D. Falany C.N. Radominska-Pandya A. Biochemistry. 2000; 39: 16000-16007Crossref PubMed Scopus (28) Google Scholar, 27Lin E.S. Yang Y.S. Anal. Biochem. 1998; 264: 111-117Crossref PubMed Scopus (21) Google Scholar). Recently, we have been interested in the mechanisms for pNPS activation of SULT1A1-catalyzed sulfation of other phenol substrates, such as naphthols. On the basis of this activation by pNPS, a mechanism was proposed that requires sulfation of PAP prior to its release, from the E·PAP complex (Scheme 1), i.e. pNPS binds to E·PAP and generates the E·PAPS·pNP complex, which dissociates pNP and generates the E·PAPS complex.In this work, the proposed mechanism was tested using the double inhibition method of Yonetani and Theorell (28Yonetani T. Theorell H. Arch. Biochem. Biophys. 1964; 106: 243-251Crossref PubMed Scopus (216) Google Scholar), which provides information on whether binding of two inhibitors is mutually exclusive. Double inhibition experiments have been successful in demonstrating whether the binding of two inhibitors is mutually exclusive, or whether they show interference or synergism in binding (28Yonetani T. Theorell H. Arch. Biochem. Biophys. 1964; 106: 243-251Crossref PubMed Scopus (216) Google Scholar, 29Cook P.F. Cleland W.W. Enzyme Kinetics and Mechanism. Garland Science, London2007: 191-195Google Scholar, 30Kiick D.M. Harris B.G. Cook P.F. Biochemistry. 1986; 25: 227-236Crossref PubMed Scopus (44) Google Scholar, 31Leskovac V. Comprehensive Enzyme Kinetics. Springer, New York2003: 91-93Google Scholar, 32Northrop D.B. Cleland W.W. J. Biol. Chem. 1974; 249: 2928-2931Abstract Full Text PDF PubMed Google Scholar). In addition, substrate inhibition by the hydroxyl substrate and exchange against forward reaction flux were used as probes of the mechanism. Data are discussed in terms of the overall mechanism of SULT1A1. Sulfotransferases (SULTs) 3The abbreviations used are: SULTsulfotransferaseSULT1A1simple phenol sulfotransferasePAPSadenosine 3′-phosphate 5′-phosphosulfatePAPadenosine 3′,5′-diphosphatepNPpara-nitrophenolpNPSpara-nitrophenyl sulfate. 3The abbreviations used are: SULTsulfotransferaseSULT1A1simple phenol sulfotransferasePAPSadenosine 3′-phosphate 5′-phosphosulfatePAPadenosine 3′,5′-diphosphatepNPpara-nitrophenolpNPSpara-nitrophenyl sulfate. are phase II drug-metabolizing enzymes that catalyze the sulfation (sulfonation) of various hydroxyl-containing compounds: biosignaling molecules such as hydroxysteroid hormones, thyroid hormones, glucocorticoid hormones, bile acids, neurotransmitters, and hydroxyl-containing xenobiotics (1Chapman E. Best M.D. Hanson S.R. Wong C.H. Angew. Chem. Int. Ed. Engl. 2004; 43: 3526-3548Crossref PubMed Scopus (234) Google Scholar, 2Coughtrie M.W. Pharmacogenomics J. 2002; 2: 297-308Crossref PubMed Scopus (183) Google Scholar, 3Duffel M.W. Marshal A.D. McPhie P. Sharma V. Jakoby W.B. Drug Metab. Rev. 2001; 33: 369-395Crossref PubMed Scopus (68) Google Scholar, 4Gamage N. Barnett A. Hempel N. Duggleby R.G. Windmill K.F. Martin J.L. McManus M.E. Toxicol. Sci. 2006; 90: 5-22Crossref PubMed Scopus (485) Google Scholar, 5Glatt H. Engelke C.E. Pabel U. Teubner W. Jones A.L. Coughtrie M.W. Andrae U. Falany C.N. Meinl W. Toxicol. Lett. 2000; 112–113: 341-348Crossref PubMed Scopus (119) Google Scholar, 6Pacifici G.M. Int. J. Clin. Pharmacol. Ther. 2004; 42: 488-495Crossref PubMed Scopus (50) Google Scholar, 7Runge-Morris M. Kocarek T.A. Curr. Drug Metab. 2005; 6: 299-307Crossref PubMed Scopus (65) Google Scholar, 8Wang L.Q. James M.O. Curr. Drug Metab. 2006; 7: 83-104Crossref PubMed Scopus (113) Google Scholar). The sulfation proceeds as shown in reaction 1, where the sulfuryl group donor is adenosine 3′-phosphate 5′-phosphosulfate (PAPS), and the reaction products are adenosine 3′,5′-diphosphate (PAP) and a sulfated product. R-OH+PAPS⇀↽SULTsR-OSO3H+PAP sulfotransferase simple phenol sulfotransferase adenosine 3′-phosphate 5′-phosphosulfate adenosine 3′,5′-diphosphate para-nitrophenol para-nitrophenyl sulfate. sulfotransferase simple phenol sulfotransferase adenosine 3′-phosphate 5′-phosphosulfate adenosine 3′,5′-diphosphate para-nitrophenol para-nitrophenyl sulfate. One of the main biological functions of SULTs is the regulation of various hormones (9Falany C.N. FASEB J. 1997; 11: 206-216Crossref PubMed Scopus (517) Google Scholar). Sulfation of xenobiotics is mainly associated with detoxification, biotransformation of a relatively hydrophobic xenobiotic into a more water-soluble sulfuric ester that is readily excreted. However, in some cases sulfation can also cause bioactivation of procarcinogens and promutagens, leading to possible toxic effects (10Coughtrie M.W. Johnston L.E. Drug Metab. Dispos. 2001; 29: 522-528PubMed Google Scholar, 11Glatt H. Chem.-Biol. Interact. 2000; 129: 141-170Crossref PubMed Scopus (302) Google Scholar). Studies of the SULTs kinetic mechanisms began to appear in the early 1980s (12Duffel M.W. Jakoby W.B. J. Biol. Chem. 1981; 256: 11123-11127Abstract Full Text PDF PubMed Google Scholar). Although many SULT isoforms have been isolated and characterized, their biological functions and catalytic mechanisms are still not well understood. Human phenol sulfotransferase (SULT1A1) is one of the major detoxifying enzymes for phenolic xenobiotics; it also catalyzes the sulfation of endogenous hydroxyl biosignaling molecules. It has very broad substrate specificity and high activity toward most phenolic compounds. SULT1A1 is also widely distributed in the human body. On the basis of isotope exchange at equilibrium, we showed that the kinetic mechanism for human SULT1A1 is steady-state-ordered with PAPS binding to the protein first, and PAP released last (13Tyapochkin E. Cook P.F. Chen G. Biochemistry. 2008; 47: 11894-11899Crossref PubMed Scopus (17) Google Scholar). Substrate inhibition by the hydroxyl substrate (sulfate acceptor) is a common feature of most cytosolic SULTs (14Barnett A.C. Tsvetanov S. Gamage N. Martin J.L. Duggleby R.G. McManus M.E. J. Biol. Chem. 2004; 279: 18799-18805Abstract Full Text Full Text PDF PubMed Scopus (47) Google Scholar, 15Miksits M. Maier-Salamon A. Aust S. Thalhammer T. Reznicek G. Kunert O. Haslinger E. Szekeres T. Jaeger W. Xenobiotica. 2005; 35: 1101-1119Crossref PubMed Scopus (80) Google Scholar). Inhibition of SULT1A1 has been observed by the substrate, naphthol. There are a number of different mechanisms that have been proposed for substrate inhibition, but the mechanism remains unclear. A ternary complex formed between substrate and the enzyme·PAP complex is the most likely possibility in an ordered mechanism, but binding to free enzyme is also possible (12Duffel M.W. Jakoby W.B. J. Biol. Chem. 1981; 256: 11123-11127Abstract Full Text PDF PubMed Google Scholar, 16Beckmann J.D. Burkett R.J. Sharpe M. Giannunzio L. Johnston D. Abbey S. Wyman A. Sung L. Biochim. Biophys. Acta. 2003; 1648: 134-139Crossref PubMed Scopus (9) Google Scholar). It is also possible, but unlikely, that substrate could bind to central complexes. In addition, binding of two substrate molecules to the active site has been proposed (4Gamage N. Barnett A. Hempel N. Duggleby R.G. Windmill K.F. Martin J.L. McManus M.E. Toxicol. Sci. 2006; 90: 5-22Crossref PubMed Scopus (485) Google Scholar, 14Barnett A.C. Tsvetanov S. Gamage N. Martin J.L. Duggleby R.G. McManus M.E. J. Biol. Chem. 2004; 279: 18799-18805Abstract Full Text Full Text PDF PubMed Scopus (47) Google Scholar). A SULT1A1 crystal structure was solved that showed two molecules of p-nitrophenol (pNP) in the same active site. However, computer modeling of this structure indicated that the active site could not easily accommodate even one molecule of a larger substrate such as β-estradiol (17Gamage N.U. Duggleby R.G. Barnett A.C. Tresillian M. Latham C.F. Liyou N.E. McManus M.E. Martin J.L. J. Biol. Chem. 2003; 278: 7655-7662Abstract Full Text Full Text PDF PubMed Scopus (139) Google Scholar). Other SULT crystal structures solved with the bound substrate indicated that only one substrate is possible in the crystal structure (18Kakuta Y. Pedersen L.G. Carter C.W. Negishi M. Pedersen L.C. Nat. Struct. Biol. 1997; 4: 904-908Crossref PubMed Scopus (230) Google Scholar, 19Pakhomova S. Buck J. Newcomer M.E. Protein Sci. 2005; 14: 176-182Crossref PubMed Scopus (9) Google Scholar, 20Pakhomova S. Kobayashi M. Buck J. Newcomer M.E. Nat. Struct. Biol. 2001; 8: 447-451Crossref PubMed Scopus (29) Google Scholar, 21Pakhomova S. Luz J.G. Kobayashi M. Mellman D. Buck J. Newcomer M.E. Acta Crystallogr. D Biol. Crystallogr. 2000; 56: 1641-1643Crossref PubMed Scopus (9) Google Scholar, 22Rehse P.H. Zhou M. Lin S.X. Biochem. J. 2002; 364: 165-171Crossref PubMed Scopus (69) Google Scholar, 23Shevtsov S. Petrotchenko E.V. Pedersen L.C. Negishi M. Environ. Health Perspect. 2003; 111: 884-888Crossref PubMed Scopus (56) Google Scholar). para-Nitrophenyl sulfate (pNPS) has been used for phenol SULTs enzyme activity assays (24Frame L.T. Ozawa S. Nowell S.A. Chou H.C. DeLongchamp R.R. Doerge D.R. Lang N.P. Kadlubar F.F. Drug Metab. Dispos. 2000; 28: 1063-1068PubMed Google Scholar, 25Chen G. Battaglia E. Senay C. Falany C.N. Radominska-Pandya A. Protein Sci. 1999; 8: 2151-2157Crossref PubMed Scopus (29) Google Scholar, 26Chen G. Rabjohn P.A. York J.L. Wooldridge C. Zhang D. Falany C.N. Radominska-Pandya A. Biochemistry. 2000; 39: 16000-16007Crossref PubMed Scopus (28) Google Scholar, 27Lin E.S. Yang Y.S. Anal. Biochem. 1998; 264: 111-117Crossref PubMed Scopus (21) Google Scholar). Recently, we have been interested in the mechanisms for pNPS activation of SULT1A1-catalyzed sulfation of other phenol substrates, such as naphthols. On the basis of this activation by pNPS, a mechanism was proposed that requires sulfation of PAP prior to its release, from the E·PAP complex (Scheme 1), i.e. pNPS binds to E·PAP and generates the E·PAPS·pNP complex, which dissociates pNP and generates the E·PAPS complex. In this work, the proposed mechanism was tested using the double inhibition method of Yonetani and Theorell (28Yonetani T. Theorell H. Arch. Biochem. Biophys. 1964; 106: 243-251Crossref PubMed Scopus (216) Google Scholar), which provides information on whether binding of two inhibitors is mutually exclusive. Double inhibition experiments have been successful in demonstrating whether the binding of two inhibitors is mutually exclusive, or whether they show interference or synergism in binding (28Yonetani T. Theorell H. Arch. Biochem. Biophys. 1964; 106: 243-251Crossref PubMed Scopus (216) Google Scholar, 29Cook P.F. Cleland W.W. Enzyme Kinetics and Mechanism. Garland Science, London2007: 191-195Google Scholar, 30Kiick D.M. Harris B.G. Cook P.F. Biochemistry. 1986; 25: 227-236Crossref PubMed Scopus (44) Google Scholar, 31Leskovac V. Comprehensive Enzyme Kinetics. Springer, New York2003: 91-93Google Scholar, 32Northrop D.B. Cleland W.W. J. Biol. Chem. 1974; 249: 2928-2931Abstract Full Text PDF PubMed Google Scholar). In addition, substrate inhibition by the hydroxyl substrate and exchange against forward reaction flux were used as probes of the mechanism. Data are discussed in terms of the overall mechanism of SULT1A1." @default.
- W1980405919 created "2016-06-24" @default.
- W1980405919 creator A5037912029 @default.
- W1980405919 creator A5055516364 @default.
- W1980405919 creator A5073420860 @default.
- W1980405919 date "2009-10-01" @default.
- W1980405919 modified "2023-10-18" @default.
- W1980405919 title "para-Nitrophenyl Sulfate Activation of Human Sulfotransferase 1A1 Is Consistent with Intercepting the E·PAP Complex and Reformation of E·PAPS" @default.
- W1980405919 cites W1549345480 @default.
- W1980405919 cites W1556130489 @default.
- W1980405919 cites W1578496857 @default.
- W1980405919 cites W1599840191 @default.
- W1980405919 cites W1849763436 @default.
- W1980405919 cites W1902823178 @default.
- W1980405919 cites W1963612270 @default.
- W1980405919 cites W1971399556 @default.
- W1980405919 cites W1982779500 @default.
- W1980405919 cites W1983174721 @default.
- W1980405919 cites W1984827766 @default.
- W1980405919 cites W1989474186 @default.
- W1980405919 cites W1990680090 @default.
- W1980405919 cites W2000861116 @default.
- W1980405919 cites W2009038469 @default.
- W1980405919 cites W2014090403 @default.
- W1980405919 cites W2019925008 @default.
- W1980405919 cites W2030941253 @default.
- W1980405919 cites W2036333800 @default.
- W1980405919 cites W2041806063 @default.
- W1980405919 cites W2042984106 @default.
- W1980405919 cites W2072010935 @default.
- W1980405919 cites W2100301597 @default.
- W1980405919 cites W2130145312 @default.
- W1980405919 cites W2155920295 @default.
- W1980405919 cites W2156123044 @default.
- W1980405919 cites W2163300665 @default.
- W1980405919 cites W2167832449 @default.
- W1980405919 cites W2226425375 @default.
- W1980405919 cites W2312643146 @default.
- W1980405919 cites W4323517678 @default.
- W1980405919 doi "https://doi.org/10.1074/jbc.m109.049312" @default.
- W1980405919 hasPubMedCentralId "https://www.ncbi.nlm.nih.gov/pmc/articles/2785567" @default.
- W1980405919 hasPubMedId "https://pubmed.ncbi.nlm.nih.gov/19706609" @default.
- W1980405919 hasPublicationYear "2009" @default.
- W1980405919 type Work @default.
- W1980405919 sameAs 1980405919 @default.
- W1980405919 citedByCount "14" @default.
- W1980405919 countsByYear W19804059192012 @default.
- W1980405919 countsByYear W19804059192013 @default.
- W1980405919 countsByYear W19804059192015 @default.
- W1980405919 countsByYear W19804059192016 @default.
- W1980405919 countsByYear W19804059192018 @default.
- W1980405919 countsByYear W19804059192019 @default.
- W1980405919 crossrefType "journal-article" @default.
- W1980405919 hasAuthorship W1980405919A5037912029 @default.
- W1980405919 hasAuthorship W1980405919A5055516364 @default.
- W1980405919 hasAuthorship W1980405919A5073420860 @default.
- W1980405919 hasBestOaLocation W19804059191 @default.
- W1980405919 hasConcept C155138218 @default.
- W1980405919 hasConcept C178790620 @default.
- W1980405919 hasConcept C185592680 @default.
- W1980405919 hasConcept C2775904581 @default.
- W1980405919 hasConcept C2778343803 @default.
- W1980405919 hasConcept C55493867 @default.
- W1980405919 hasConcept C71240020 @default.
- W1980405919 hasConceptScore W1980405919C155138218 @default.
- W1980405919 hasConceptScore W1980405919C178790620 @default.
- W1980405919 hasConceptScore W1980405919C185592680 @default.
- W1980405919 hasConceptScore W1980405919C2775904581 @default.
- W1980405919 hasConceptScore W1980405919C2778343803 @default.
- W1980405919 hasConceptScore W1980405919C55493867 @default.
- W1980405919 hasConceptScore W1980405919C71240020 @default.
- W1980405919 hasIssue "43" @default.
- W1980405919 hasLocation W19804059191 @default.
- W1980405919 hasLocation W19804059192 @default.
- W1980405919 hasLocation W19804059193 @default.
- W1980405919 hasLocation W19804059194 @default.
- W1980405919 hasOpenAccess W1980405919 @default.
- W1980405919 hasPrimaryLocation W19804059191 @default.
- W1980405919 hasRelatedWork W1712523681 @default.
- W1980405919 hasRelatedWork W1982807179 @default.
- W1980405919 hasRelatedWork W2000226399 @default.
- W1980405919 hasRelatedWork W2000309406 @default.
- W1980405919 hasRelatedWork W2063679949 @default.
- W1980405919 hasRelatedWork W2097230678 @default.
- W1980405919 hasRelatedWork W2142319763 @default.
- W1980405919 hasRelatedWork W2147593455 @default.
- W1980405919 hasRelatedWork W2886656117 @default.
- W1980405919 hasRelatedWork W4233704945 @default.
- W1980405919 hasVolume "284" @default.
- W1980405919 isParatext "false" @default.
- W1980405919 isRetracted "false" @default.
- W1980405919 magId "1980405919" @default.
- W1980405919 workType "article" @default.