Matches in SemOpenAlex for { <https://semopenalex.org/work/W1980492087> ?p ?o ?g. }
Showing items 1 to 89 of
89
with 100 items per page.
- W1980492087 endingPage "311" @default.
- W1980492087 startingPage "297" @default.
- W1980492087 abstract "Computation of the generalised inverse A+ and rank of an arbitrary (including singular and rectangular) matrix A has many applications. This paper derives an iterative scheme to approximate the generalised inverse which can be expressed in the form of successive squaring of a composite matrix T. Given an m by n matrix A with m≈n, we show that the generalised inverse of A can be computed in parallel time ranging from O(log n) to O(log2 n), similar to previous methods. The rank of matrix A is obtained along with the generalised inverse. The successive matrix squaring algorithm is generalised to higher-order schemes, where the composite matrix is repeatedly raised to an integer power l>2. This form of expression leads to a simplified notation compared with that of earlier methods, and helps to clarify the relationship between l, the order of the iterative scheme and K, the number of iterations. In particular, the accuracy achieved in approximating A+ is a function only of the magnitude of lK and does not depend on the particular values chosen for l and K; we argue that there is no obvious advantage in choosing l other than 2. Our derived error bound for the approximation to A+ is tighter than that previously established. The same bound applies to the rank. Numerical experiments with different test matrices (square, rectangular, complex, singular, etc.) illustrate the method. They further demonstrate that our tighter error bound provides a useful guide to the number of iterations required. In the examples given, the specified accuracy was achieved after the calculated number of iterations, but no earlier. Implementation studies on a general-purpose parallel machine (CM-5) demonstrated a smaller than expected penalty for direct squaring of matrix T in comparison with multiplication of its component block matrices. For special-purpose VLSI architectures, the simple structure of the matrix squaring algorithm leads to a straightforward parallel implementation with low communication overheads." @default.
- W1980492087 created "2016-06-24" @default.
- W1980492087 creator A5063916336 @default.
- W1980492087 creator A5074521816 @default.
- W1980492087 creator A5075542251 @default.
- W1980492087 date "1994-03-01" @default.
- W1980492087 modified "2023-10-18" @default.
- W1980492087 title "Generalised matrix inversion and rank computation by successive matrix powering" @default.
- W1980492087 cites W1974511160 @default.
- W1980492087 cites W1991512397 @default.
- W1980492087 cites W1995272909 @default.
- W1980492087 cites W2017205387 @default.
- W1980492087 cites W2017726114 @default.
- W1980492087 cites W2043904121 @default.
- W1980492087 cites W2064567650 @default.
- W1980492087 cites W2078738632 @default.
- W1980492087 cites W2081250824 @default.
- W1980492087 cites W2091101062 @default.
- W1980492087 cites W2113097540 @default.
- W1980492087 cites W2000169318 @default.
- W1980492087 doi "https://doi.org/10.1016/s0167-8191(06)80014-1" @default.
- W1980492087 hasPublicationYear "1994" @default.
- W1980492087 type Work @default.
- W1980492087 sameAs 1980492087 @default.
- W1980492087 citedByCount "31" @default.
- W1980492087 countsByYear W19804920872013 @default.
- W1980492087 countsByYear W19804920872014 @default.
- W1980492087 countsByYear W19804920872015 @default.
- W1980492087 countsByYear W19804920872016 @default.
- W1980492087 countsByYear W19804920872018 @default.
- W1980492087 countsByYear W19804920872019 @default.
- W1980492087 countsByYear W19804920872020 @default.
- W1980492087 countsByYear W19804920872021 @default.
- W1980492087 countsByYear W19804920872023 @default.
- W1980492087 crossrefType "journal-article" @default.
- W1980492087 hasAuthorship W1980492087A5063916336 @default.
- W1980492087 hasAuthorship W1980492087A5074521816 @default.
- W1980492087 hasAuthorship W1980492087A5075542251 @default.
- W1980492087 hasConcept C106487976 @default.
- W1980492087 hasConcept C109282560 @default.
- W1980492087 hasConcept C11413529 @default.
- W1980492087 hasConcept C114614502 @default.
- W1980492087 hasConcept C121332964 @default.
- W1980492087 hasConcept C158693339 @default.
- W1980492087 hasConcept C159985019 @default.
- W1980492087 hasConcept C164226766 @default.
- W1980492087 hasConcept C192562407 @default.
- W1980492087 hasConcept C207467116 @default.
- W1980492087 hasConcept C2524010 @default.
- W1980492087 hasConcept C28826006 @default.
- W1980492087 hasConcept C33923547 @default.
- W1980492087 hasConcept C45374587 @default.
- W1980492087 hasConcept C62520636 @default.
- W1980492087 hasConceptScore W1980492087C106487976 @default.
- W1980492087 hasConceptScore W1980492087C109282560 @default.
- W1980492087 hasConceptScore W1980492087C11413529 @default.
- W1980492087 hasConceptScore W1980492087C114614502 @default.
- W1980492087 hasConceptScore W1980492087C121332964 @default.
- W1980492087 hasConceptScore W1980492087C158693339 @default.
- W1980492087 hasConceptScore W1980492087C159985019 @default.
- W1980492087 hasConceptScore W1980492087C164226766 @default.
- W1980492087 hasConceptScore W1980492087C192562407 @default.
- W1980492087 hasConceptScore W1980492087C207467116 @default.
- W1980492087 hasConceptScore W1980492087C2524010 @default.
- W1980492087 hasConceptScore W1980492087C28826006 @default.
- W1980492087 hasConceptScore W1980492087C33923547 @default.
- W1980492087 hasConceptScore W1980492087C45374587 @default.
- W1980492087 hasConceptScore W1980492087C62520636 @default.
- W1980492087 hasIssue "3" @default.
- W1980492087 hasLocation W19804920871 @default.
- W1980492087 hasOpenAccess W1980492087 @default.
- W1980492087 hasPrimaryLocation W19804920871 @default.
- W1980492087 hasRelatedWork W1590225513 @default.
- W1980492087 hasRelatedWork W2065960720 @default.
- W1980492087 hasRelatedWork W2098397648 @default.
- W1980492087 hasRelatedWork W2352318562 @default.
- W1980492087 hasRelatedWork W304044207 @default.
- W1980492087 hasRelatedWork W3121732341 @default.
- W1980492087 hasRelatedWork W4289560224 @default.
- W1980492087 hasRelatedWork W4300458475 @default.
- W1980492087 hasRelatedWork W4360942255 @default.
- W1980492087 hasRelatedWork W4378674518 @default.
- W1980492087 hasVolume "20" @default.
- W1980492087 isParatext "false" @default.
- W1980492087 isRetracted "false" @default.
- W1980492087 magId "1980492087" @default.
- W1980492087 workType "article" @default.