Matches in SemOpenAlex for { <https://semopenalex.org/work/W1980632657> ?p ?o ?g. }
- W1980632657 endingPage "32" @default.
- W1980632657 startingPage "17" @default.
- W1980632657 abstract "Introduction. Theoretical models of the freeze-drying process are potentially useful to guide the design of a freeze-drying process as well as to obtain information not readily accessible by direct experimentation, such as moisture distribution and glass transition temperature, Tg, within a vial during processing. Previous models were either restricted to the steady state and/or to one-dimensional problems. While such models are useful, the restrictions seriously limit applications of the theory. An earlier work from these laboratories presented a nonsteady state, two-dimensional model (which becomes a three-dimensional model with an axis of symmetry) of sublimation and desorption that is quite versatile and allows the user to investigate a wide variety of heat and mass transfer problems in both primary and secondary drying. The earlier treatment focused on the mathematical details of the finite element formulation of the problem and on validation of the calculations. The objective of the current study is to provide the physical rational for the choice of boundary conditions, to validate the model by comparison of calculated results with experimental data, and to discuss several representative pharmaceutical applications. To validate the model and evaluate its utility in studying distribution of moisture and glass transition temperature in a representative product, calculations for a sucrose-based formulation were performed, and selected results were compared with experimental data. Theoretical Model. The model is based on a set of coupled differential equations resulting from constraints imposed by conservation of energy and mass, where numerical results are obtained using finite element analysis. Use of the model proceeds via a “modular software package” supported by Technalysis Inc. (Passage™/Freeze Drying). This package allows the user to define the problem by inputing shelf temperature, chamber pressure, container properties, product properties, and numerical analysis parameters required for the finite element analysis. Most input data are either available in the literature or may be easily estimated. Product resistance to water vapor flow, mass transfer coefficients describing secondary drying, and container heat transfer coefficients must normally be measured. Each element (i.e., each small subsystem of the product) may be assigned different values of product resistance to accurately describe the nonlinear resistance behavior often shown by real products. During primary drying, the chamber pressure and shelf temperature may be varied in steps. During secondary drying, the change in gas composition from pure water to mostly inert gas is calculated by the model from the instantaneous water vapor flux and the input pumping capacity of the freeze dryer. Results. Comparison of the theoretical results with the experiment data for a 3% sucrose formulation is generally satisfactory. Primary drying times agree within two hours, and the product temperature vs. time curves in primary drying agree within about ± 1°C. The residual moisture vs. time curve is predicted by the theory within the likely experimental error, and the lack of large variation in moisture within the vial (i.e., top vs. side vs. bottom) is also correctly predicted by theory. The theoretical calculations also provide the time variation of “Tg–T” during both primary and secondary drying, where T is product temperature and Tg is the glass transition temperature of the product phase. The calculations demonstrate that with a secondary drying protocol using a rapid ramp of shelf temperature, the product temperature does rise above Tg during early secondary drying, perhaps being a factor in the phenomenon known as “cake shrinkage”. Conclusion. The theoretical results of in-process product temperature, primary drying time, and moisture content mapping and history are consistent with the experimental results, suggesting the theoretical model should be useful in process development and “trouble-shooting” applications." @default.
- W1980632657 created "2016-06-24" @default.
- W1980632657 creator A5004194673 @default.
- W1980632657 creator A5037281896 @default.
- W1980632657 creator A5040338626 @default.
- W1980632657 creator A5055609603 @default.
- W1980632657 creator A5062742186 @default.
- W1980632657 creator A5064626648 @default.
- W1980632657 creator A5070635288 @default.
- W1980632657 date "2005-01-01" @default.
- W1980632657 modified "2023-10-10" @default.
- W1980632657 title "The Nonsteady State Modeling of Freeze Drying: In-Process Product Temperature and Moisture Content Mapping and Pharmaceutical Product Quality Applications" @default.
- W1980632657 cites W13308618 @default.
- W1980632657 cites W1971489921 @default.
- W1980632657 cites W1993675089 @default.
- W1980632657 cites W2028241727 @default.
- W1980632657 cites W2040184307 @default.
- W1980632657 cites W2045454730 @default.
- W1980632657 cites W2080370993 @default.
- W1980632657 cites W2142086477 @default.
- W1980632657 cites W72627025 @default.
- W1980632657 doi "https://doi.org/10.1081/pdt-35869" @default.
- W1980632657 hasPubMedId "https://pubmed.ncbi.nlm.nih.gov/15776810" @default.
- W1980632657 hasPublicationYear "2005" @default.
- W1980632657 type Work @default.
- W1980632657 sameAs 1980632657 @default.
- W1980632657 citedByCount "66" @default.
- W1980632657 countsByYear W19806326572012 @default.
- W1980632657 countsByYear W19806326572013 @default.
- W1980632657 countsByYear W19806326572014 @default.
- W1980632657 countsByYear W19806326572015 @default.
- W1980632657 countsByYear W19806326572017 @default.
- W1980632657 countsByYear W19806326572018 @default.
- W1980632657 countsByYear W19806326572019 @default.
- W1980632657 countsByYear W19806326572020 @default.
- W1980632657 countsByYear W19806326572021 @default.
- W1980632657 countsByYear W19806326572022 @default.
- W1980632657 countsByYear W19806326572023 @default.
- W1980632657 crossrefType "journal-article" @default.
- W1980632657 hasAuthorship W1980632657A5004194673 @default.
- W1980632657 hasAuthorship W1980632657A5037281896 @default.
- W1980632657 hasAuthorship W1980632657A5040338626 @default.
- W1980632657 hasAuthorship W1980632657A5055609603 @default.
- W1980632657 hasAuthorship W1980632657A5062742186 @default.
- W1980632657 hasAuthorship W1980632657A5064626648 @default.
- W1980632657 hasAuthorship W1980632657A5070635288 @default.
- W1980632657 hasConcept C121332964 @default.
- W1980632657 hasConcept C122865956 @default.
- W1980632657 hasConcept C127413603 @default.
- W1980632657 hasConcept C134306372 @default.
- W1980632657 hasConcept C135628077 @default.
- W1980632657 hasConcept C15744967 @default.
- W1980632657 hasConcept C176864760 @default.
- W1980632657 hasConcept C178790620 @default.
- W1980632657 hasConcept C182310444 @default.
- W1980632657 hasConcept C185592680 @default.
- W1980632657 hasConcept C186060115 @default.
- W1980632657 hasConcept C21880701 @default.
- W1980632657 hasConcept C33923547 @default.
- W1980632657 hasConcept C41008148 @default.
- W1980632657 hasConcept C51038369 @default.
- W1980632657 hasConcept C521977710 @default.
- W1980632657 hasConcept C542102704 @default.
- W1980632657 hasConcept C57879066 @default.
- W1980632657 hasConcept C58437636 @default.
- W1980632657 hasConcept C86803240 @default.
- W1980632657 hasConcept C97355855 @default.
- W1980632657 hasConceptScore W1980632657C121332964 @default.
- W1980632657 hasConceptScore W1980632657C122865956 @default.
- W1980632657 hasConceptScore W1980632657C127413603 @default.
- W1980632657 hasConceptScore W1980632657C134306372 @default.
- W1980632657 hasConceptScore W1980632657C135628077 @default.
- W1980632657 hasConceptScore W1980632657C15744967 @default.
- W1980632657 hasConceptScore W1980632657C176864760 @default.
- W1980632657 hasConceptScore W1980632657C178790620 @default.
- W1980632657 hasConceptScore W1980632657C182310444 @default.
- W1980632657 hasConceptScore W1980632657C185592680 @default.
- W1980632657 hasConceptScore W1980632657C186060115 @default.
- W1980632657 hasConceptScore W1980632657C21880701 @default.
- W1980632657 hasConceptScore W1980632657C33923547 @default.
- W1980632657 hasConceptScore W1980632657C41008148 @default.
- W1980632657 hasConceptScore W1980632657C51038369 @default.
- W1980632657 hasConceptScore W1980632657C521977710 @default.
- W1980632657 hasConceptScore W1980632657C542102704 @default.
- W1980632657 hasConceptScore W1980632657C57879066 @default.
- W1980632657 hasConceptScore W1980632657C58437636 @default.
- W1980632657 hasConceptScore W1980632657C86803240 @default.
- W1980632657 hasConceptScore W1980632657C97355855 @default.
- W1980632657 hasIssue "1" @default.
- W1980632657 hasLocation W19806326571 @default.
- W1980632657 hasLocation W19806326572 @default.
- W1980632657 hasOpenAccess W1980632657 @default.
- W1980632657 hasPrimaryLocation W19806326571 @default.
- W1980632657 hasRelatedWork W2130075290 @default.
- W1980632657 hasRelatedWork W2178397802 @default.
- W1980632657 hasRelatedWork W2295604472 @default.
- W1980632657 hasRelatedWork W2415037261 @default.
- W1980632657 hasRelatedWork W2549951279 @default.