Matches in SemOpenAlex for { <https://semopenalex.org/work/W1980935397> ?p ?o ?g. }
- W1980935397 endingPage "36" @default.
- W1980935397 startingPage "23" @default.
- W1980935397 abstract "By the example of environmental monitoring, some applications of geographic information systems (GIS), geostatistics, metadata banking, and Classification and Regression Trees (CART) are presented. These tools are recommended for mapping statistically estimated hot spots of vectors and pathogens. GIS were introduced as tools for spatially modelling the real world. The modelling can be done by mapping objects according to the spatial information content of data. Additionally, this can be supported by geostatistical and multivariate statistical modelling. This is demonstrated by the example of modelling marine habitats of benthic communities and of terrestrial ecoregions. Such ecoregionalisations may be used to predict phenomena based on the statistical relation between measurements of an interesting phenomenon such as, e.g., the incidence of medically relevant species and correlated characteristics of the ecoregions. The combination of meteorological data and data on plant phenology can enhance the spatial resolution of the information on climate change. To this end, meteorological and phenological data have to be correlated. To enable this, both data sets which are from disparate monitoring networks have to be spatially connected by means of geostatistical estimation. This is demonstrated by the example of transformation of site-specific data on plant phenology into surface data. The analysis allows for spatial comparison of the phenology during the two periods 1961–1990 and 1991–2002 covering whole Germany. The changes in both plant phenology and air temperature were proved to be statistically significant. Thus, they can be combined by GIS overlay technique to enhance the spatial resolution of the information on the climate change and use them for the prediction of vector incidences at the regional scale. The localisation of such risk hot spots can be done by geometrically merging surface data on promoting factors. This is demonstrated by the example of the transfer of heavy metals through soils. The predicted hot spots of heavy metal transfer can be validated empirically by measurement data which can be enquired by a metadata base linked with a geographic information system. A corresponding strategy for the detection of vector hot spots in medical epidemiology is recommended. Data on incidences and habitats of the Anophelinae in the marsh regions of Lower Saxony (Germany) were used to calculate a habitat model by CART, which together with climate data and data on ecoregions can be further used for the prediction of habitats of medically relevant vector species. In the future, this approach should be supported by an internet-based information system consisting of three components: metadata questionnaire, metadata base, and GIS to link metadata, surface data, and measurement data on incidences and habitats of medically relevant species and related data on climate, phenology, and ecoregional characteristic conditions." @default.
- W1980935397 created "2016-06-24" @default.
- W1980935397 creator A5072980953 @default.
- W1980935397 date "2006-05-01" @default.
- W1980935397 modified "2023-09-25" @default.
- W1980935397 title "GIS, geostatistics, metadata banking, and tree-based models for data analysis and mapping in environmental monitoring and epidemiology" @default.
- W1980935397 cites W1512773496 @default.
- W1980935397 cites W1522060320 @default.
- W1980935397 cites W1932414648 @default.
- W1980935397 cites W1964593287 @default.
- W1980935397 cites W1964939521 @default.
- W1980935397 cites W1965825801 @default.
- W1980935397 cites W1970869250 @default.
- W1980935397 cites W1972978214 @default.
- W1980935397 cites W1974337444 @default.
- W1980935397 cites W1976683782 @default.
- W1980935397 cites W1982549745 @default.
- W1980935397 cites W1983090611 @default.
- W1980935397 cites W1984655801 @default.
- W1980935397 cites W1992055851 @default.
- W1980935397 cites W1994810068 @default.
- W1980935397 cites W1998447689 @default.
- W1980935397 cites W2003423861 @default.
- W1980935397 cites W2005422137 @default.
- W1980935397 cites W2006008368 @default.
- W1980935397 cites W2008478928 @default.
- W1980935397 cites W2013715519 @default.
- W1980935397 cites W2016912766 @default.
- W1980935397 cites W2019396957 @default.
- W1980935397 cites W2022396421 @default.
- W1980935397 cites W2024415344 @default.
- W1980935397 cites W2038945883 @default.
- W1980935397 cites W2052861081 @default.
- W1980935397 cites W2059131239 @default.
- W1980935397 cites W2061274485 @default.
- W1980935397 cites W2064246035 @default.
- W1980935397 cites W2067795240 @default.
- W1980935397 cites W2070754571 @default.
- W1980935397 cites W2081605778 @default.
- W1980935397 cites W2084218260 @default.
- W1980935397 cites W2088257680 @default.
- W1980935397 cites W2090405478 @default.
- W1980935397 cites W2093783462 @default.
- W1980935397 cites W2097894326 @default.
- W1980935397 cites W2100750091 @default.
- W1980935397 cites W2102554983 @default.
- W1980935397 cites W2103724237 @default.
- W1980935397 cites W2109439679 @default.
- W1980935397 cites W2113791012 @default.
- W1980935397 cites W2124743680 @default.
- W1980935397 cites W2132398700 @default.
- W1980935397 cites W2135101074 @default.
- W1980935397 cites W2141045813 @default.
- W1980935397 cites W2141499538 @default.
- W1980935397 cites W2142137874 @default.
- W1980935397 cites W2145257329 @default.
- W1980935397 cites W2145650424 @default.
- W1980935397 cites W2151768357 @default.
- W1980935397 cites W2184671174 @default.
- W1980935397 cites W2345398988 @default.
- W1980935397 cites W33612473 @default.
- W1980935397 cites W410415334 @default.
- W1980935397 cites W4232544304 @default.
- W1980935397 cites W4237482784 @default.
- W1980935397 cites W4243986299 @default.
- W1980935397 cites W4246699285 @default.
- W1980935397 cites W4248941179 @default.
- W1980935397 cites W4253645085 @default.
- W1980935397 cites W4255890354 @default.
- W1980935397 doi "https://doi.org/10.1016/j.ijmm.2006.02.015" @default.
- W1980935397 hasPubMedId "https://pubmed.ncbi.nlm.nih.gov/16600679" @default.
- W1980935397 hasPublicationYear "2006" @default.
- W1980935397 type Work @default.
- W1980935397 sameAs 1980935397 @default.
- W1980935397 citedByCount "64" @default.
- W1980935397 countsByYear W19809353972012 @default.
- W1980935397 countsByYear W19809353972013 @default.
- W1980935397 countsByYear W19809353972014 @default.
- W1980935397 countsByYear W19809353972016 @default.
- W1980935397 countsByYear W19809353972017 @default.
- W1980935397 countsByYear W19809353972018 @default.
- W1980935397 countsByYear W19809353972020 @default.
- W1980935397 countsByYear W19809353972021 @default.
- W1980935397 countsByYear W19809353972022 @default.
- W1980935397 crossrefType "journal-article" @default.
- W1980935397 hasAuthorship W1980935397A5072980953 @default.
- W1980935397 hasConcept C100970517 @default.
- W1980935397 hasConcept C105795698 @default.
- W1980935397 hasConcept C111919701 @default.
- W1980935397 hasConcept C124101348 @default.
- W1980935397 hasConcept C125572338 @default.
- W1980935397 hasConcept C159620131 @default.
- W1980935397 hasConcept C161584116 @default.
- W1980935397 hasConcept C18903297 @default.
- W1980935397 hasConcept C205649164 @default.
- W1980935397 hasConcept C2776356880 @default.
- W1980935397 hasConcept C33923547 @default.
- W1980935397 hasConcept C39432304 @default.