Matches in SemOpenAlex for { <https://semopenalex.org/work/W1981009968> ?p ?o ?g. }
Showing items 1 to 77 of
77
with 100 items per page.
- W1981009968 endingPage "1179" @default.
- W1981009968 startingPage "1159" @default.
- W1981009968 abstract "Abstract Part I of this paper ( Adjiman et al., 1998a ) described the theoretical foundations of a global optimization algorithm, the α BB algorithm, which can be used to solve problems belonging to the broad class of twicedifferentiable NPLs. For any such problem, the ability to automatically generate progressively tighter convex lower bounding problems at each iteration guarantees the convergence of the branch-and-bound α BB algorithm to within e of the global optimum solution. Several methods were presented for the construction of valid convex underestimators for general nonconvex functions. In this second part, the performance of the proposed algorithm and its alternative underestimators is studied through their application to a variety of problems. An implementation of the α BB is described and a number of rules for branching variable selection and variable bound updates are shown to enhance convergence rates. A user-friendly parser facilitates problem input and provides flexibility in the selection of an underestimating strategy. In addition, the package features both automatic differentiation and interval arithmetic capabilities. Making use of all the available options, the α BB algorithm successfully identifies the global optimum solution of small literature problems, of small and medium size chemical engineering problems in the areas of reactors network design, heat exchanger network design, reactor–separator network design, of generalized geometric programming problems for design and control, and of batch process design problems with uncertainty." @default.
- W1981009968 created "2016-06-24" @default.
- W1981009968 creator A5049184270 @default.
- W1981009968 creator A5050187529 @default.
- W1981009968 creator A5062535358 @default.
- W1981009968 date "1998-08-01" @default.
- W1981009968 modified "2023-09-30" @default.
- W1981009968 title "A global optimization method, αBB, for general twice-differentiable constrained NLPs—II. Implementation and computational results" @default.
- W1981009968 cites W1023567584 @default.
- W1981009968 cites W1030416483 @default.
- W1981009968 cites W1514616190 @default.
- W1981009968 cites W1984425167 @default.
- W1981009968 cites W2023059010 @default.
- W1981009968 cites W2056371558 @default.
- W1981009968 cites W2062081085 @default.
- W1981009968 cites W2066129260 @default.
- W1981009968 cites W2155524113 @default.
- W1981009968 cites W2162166182 @default.
- W1981009968 cites W2564555686 @default.
- W1981009968 cites W4206215385 @default.
- W1981009968 cites W1976301832 @default.
- W1981009968 doi "https://doi.org/10.1016/s0098-1354(98)00218-x" @default.
- W1981009968 hasPublicationYear "1998" @default.
- W1981009968 type Work @default.
- W1981009968 sameAs 1981009968 @default.
- W1981009968 citedByCount "313" @default.
- W1981009968 countsByYear W19810099682012 @default.
- W1981009968 countsByYear W19810099682013 @default.
- W1981009968 countsByYear W19810099682014 @default.
- W1981009968 countsByYear W19810099682015 @default.
- W1981009968 countsByYear W19810099682016 @default.
- W1981009968 countsByYear W19810099682017 @default.
- W1981009968 countsByYear W19810099682018 @default.
- W1981009968 countsByYear W19810099682019 @default.
- W1981009968 countsByYear W19810099682020 @default.
- W1981009968 countsByYear W19810099682021 @default.
- W1981009968 countsByYear W19810099682022 @default.
- W1981009968 countsByYear W19810099682023 @default.
- W1981009968 crossrefType "journal-article" @default.
- W1981009968 hasAuthorship W1981009968A5049184270 @default.
- W1981009968 hasAuthorship W1981009968A5050187529 @default.
- W1981009968 hasAuthorship W1981009968A5062535358 @default.
- W1981009968 hasConcept C11413529 @default.
- W1981009968 hasConcept C126255220 @default.
- W1981009968 hasConcept C202444582 @default.
- W1981009968 hasConcept C202615002 @default.
- W1981009968 hasConcept C28826006 @default.
- W1981009968 hasConcept C33923547 @default.
- W1981009968 hasConcept C41008148 @default.
- W1981009968 hasConceptScore W1981009968C11413529 @default.
- W1981009968 hasConceptScore W1981009968C126255220 @default.
- W1981009968 hasConceptScore W1981009968C202444582 @default.
- W1981009968 hasConceptScore W1981009968C202615002 @default.
- W1981009968 hasConceptScore W1981009968C28826006 @default.
- W1981009968 hasConceptScore W1981009968C33923547 @default.
- W1981009968 hasConceptScore W1981009968C41008148 @default.
- W1981009968 hasIssue "9" @default.
- W1981009968 hasLocation W19810099681 @default.
- W1981009968 hasOpenAccess W1981009968 @default.
- W1981009968 hasPrimaryLocation W19810099681 @default.
- W1981009968 hasRelatedWork W1576960788 @default.
- W1981009968 hasRelatedWork W1970594704 @default.
- W1981009968 hasRelatedWork W1983366713 @default.
- W1981009968 hasRelatedWork W2028401458 @default.
- W1981009968 hasRelatedWork W2332201812 @default.
- W1981009968 hasRelatedWork W2373677839 @default.
- W1981009968 hasRelatedWork W2787058745 @default.
- W1981009968 hasRelatedWork W2909780748 @default.
- W1981009968 hasRelatedWork W4212900149 @default.
- W1981009968 hasRelatedWork W972173259 @default.
- W1981009968 hasVolume "22" @default.
- W1981009968 isParatext "false" @default.
- W1981009968 isRetracted "false" @default.
- W1981009968 magId "1981009968" @default.
- W1981009968 workType "article" @default.