Matches in SemOpenAlex for { <https://semopenalex.org/work/W1981014057> ?p ?o ?g. }
Showing items 1 to 85 of
85
with 100 items per page.
- W1981014057 endingPage "388" @default.
- W1981014057 startingPage "345" @default.
- W1981014057 abstract "(Received in revised form 27 April 1989) NOVIKOV'S conjecture on the homotopy invariance of higher signatures (28) can be formulated as follows: given a finitely presented group I and a compact oriented smooth manifold M, together with a continuous map +:M+BI, the generalized signatures (L(M)* $*(<), (Ml), where 5 runs over all classes in H*(BI, Q) and L(M) denotes the total Hirzebruch L-class of M, are homotopy invariants of the pair (M, $). In other words, if h: N+M is a hotiiotopy equivalence of oriented smooth manifolds, then (L(N)* h*($*(t)), (iV))=(L(M)*$*({), (Ml). The validity of this conjecture has been established, by a variety of techniques, for many groups I, most notably for closed discrete subgroups of finitely connected Lie groups. The latter result is due to Kasparov (24) and its proofs is based on bivariant K-theory. In this paper we present a new and more direct method for attacking the Novikov conjecture, which yields a proof of the conjecture for Gromov's (word) hyperbolic groups ( 183. These groups form an extremely rich and interesting class of finitely presented groups, which differs significantly, both in size and in nature, from the groups for which Novikov's conjecture was previously known. First of all, as pointed out by Gromov (18), they are generic among all finitely presented groups in the following sense: the ratio between the number of hyperbolic groups and all groups with a fixed number of generators and a fixed number of relations, each of length at most 1, tends to 1 when I+co (18,0.2(A)). Secondly, when adding at random relations to a (non-elementary) hyperbolic group, one obtains again a hyperbolic group (18,5.5). Thirdly, the cohomology of any finite polyhedron can be embedded into the cohomology of a hyperbolic group (18, 0.2(c)). Also, many of the hyperbolic groups exhibit exotic properties, like Kazhdan's property T ( 18, 5.61 or being non-linear (in a non-trivial way). Our approach is based on expressing the higher signatures in terms of the pairing between cyclic cohomology and K-theory (cf. (8)). The hyperbolicity assumption plays a twofold role: first, it ensures, via a deep result of Gromov (18; 8.3T-J, that every class < E Hk*' (BT, C) can be represented by a bounded group cocycle, and secondly, it enables us to make use of a critical norm estimate (first proved by Haagerup (20) for free groups), recently extended by Jolissaint (23) and de la Harpe (21) to hyperbolic groups. The paper is organized as follows. Using the Alexander-Spanier realization of the cohomology of a smooth manifold, reviewed in $1, we define in $2 localized analytic indices" @default.
- W1981014057 created "2016-06-24" @default.
- W1981014057 creator A5007101684 @default.
- W1981014057 creator A5070286725 @default.
- W1981014057 date "1990-01-01" @default.
- W1981014057 modified "2023-09-30" @default.
- W1981014057 title "Cyclic cohomology, the Novikov conjecture and hyperbolic groups" @default.
- W1981014057 cites W1964556348 @default.
- W1981014057 cites W1967658353 @default.
- W1981014057 cites W1976351612 @default.
- W1981014057 cites W1993500325 @default.
- W1981014057 cites W2007579992 @default.
- W1981014057 cites W2039082854 @default.
- W1981014057 cites W2050088735 @default.
- W1981014057 cites W2053074542 @default.
- W1981014057 cites W2053658551 @default.
- W1981014057 cites W2055651055 @default.
- W1981014057 cites W2064773552 @default.
- W1981014057 cites W2068625544 @default.
- W1981014057 cites W2072011469 @default.
- W1981014057 cites W2084468580 @default.
- W1981014057 cites W2093671631 @default.
- W1981014057 cites W2200034839 @default.
- W1981014057 cites W2206839359 @default.
- W1981014057 cites W4233983689 @default.
- W1981014057 doi "https://doi.org/10.1016/0040-9383(90)90003-3" @default.
- W1981014057 hasPublicationYear "1990" @default.
- W1981014057 type Work @default.
- W1981014057 sameAs 1981014057 @default.
- W1981014057 citedByCount "368" @default.
- W1981014057 countsByYear W19810140572012 @default.
- W1981014057 countsByYear W19810140572013 @default.
- W1981014057 countsByYear W19810140572014 @default.
- W1981014057 countsByYear W19810140572015 @default.
- W1981014057 countsByYear W19810140572016 @default.
- W1981014057 countsByYear W19810140572017 @default.
- W1981014057 countsByYear W19810140572018 @default.
- W1981014057 countsByYear W19810140572019 @default.
- W1981014057 countsByYear W19810140572020 @default.
- W1981014057 countsByYear W19810140572021 @default.
- W1981014057 countsByYear W19810140572022 @default.
- W1981014057 countsByYear W19810140572023 @default.
- W1981014057 crossrefType "journal-article" @default.
- W1981014057 hasAuthorship W1981014057A5007101684 @default.
- W1981014057 hasAuthorship W1981014057A5070286725 @default.
- W1981014057 hasBestOaLocation W19810140571 @default.
- W1981014057 hasConcept C114170632 @default.
- W1981014057 hasConcept C136119220 @default.
- W1981014057 hasConcept C202444582 @default.
- W1981014057 hasConcept C2780990831 @default.
- W1981014057 hasConcept C33923547 @default.
- W1981014057 hasConcept C68365058 @default.
- W1981014057 hasConcept C72738302 @default.
- W1981014057 hasConcept C78606066 @default.
- W1981014057 hasConcept C84254916 @default.
- W1981014057 hasConceptScore W1981014057C114170632 @default.
- W1981014057 hasConceptScore W1981014057C136119220 @default.
- W1981014057 hasConceptScore W1981014057C202444582 @default.
- W1981014057 hasConceptScore W1981014057C2780990831 @default.
- W1981014057 hasConceptScore W1981014057C33923547 @default.
- W1981014057 hasConceptScore W1981014057C68365058 @default.
- W1981014057 hasConceptScore W1981014057C72738302 @default.
- W1981014057 hasConceptScore W1981014057C78606066 @default.
- W1981014057 hasConceptScore W1981014057C84254916 @default.
- W1981014057 hasIssue "3" @default.
- W1981014057 hasLocation W19810140571 @default.
- W1981014057 hasOpenAccess W1981014057 @default.
- W1981014057 hasPrimaryLocation W19810140571 @default.
- W1981014057 hasRelatedWork W1981014057 @default.
- W1981014057 hasRelatedWork W1982456117 @default.
- W1981014057 hasRelatedWork W2056663089 @default.
- W1981014057 hasRelatedWork W2137375302 @default.
- W1981014057 hasRelatedWork W2334395192 @default.
- W1981014057 hasRelatedWork W2897153210 @default.
- W1981014057 hasRelatedWork W2903382667 @default.
- W1981014057 hasRelatedWork W2964004067 @default.
- W1981014057 hasRelatedWork W3026358768 @default.
- W1981014057 hasRelatedWork W776536739 @default.
- W1981014057 hasVolume "29" @default.
- W1981014057 isParatext "false" @default.
- W1981014057 isRetracted "false" @default.
- W1981014057 magId "1981014057" @default.
- W1981014057 workType "article" @default.