Matches in SemOpenAlex for { <https://semopenalex.org/work/W1981015491> ?p ?o ?g. }
- W1981015491 endingPage "1179" @default.
- W1981015491 startingPage "1167" @default.
- W1981015491 abstract "Functional data are increasingly encountered in scientific studies, and their high dimensionality and complexity lead to many analytical challenges. Various methods for functional data analysis have been developed, including functional response regression methods that involve regression of a functional response on univariate/multivariate predictors with nonparametrically represented functional coefficients. In existing methods, however, the functional regression can be sensitive to outlying curves and outlying regions of curves, so is not robust. In this article, we introduce a new Bayesian method, robust functional mixed models (R-FMM), for performing robust functional regression within the general functional mixed model framework, which includes multiple continuous or categorical predictors and random effect functions accommodating potential between-function correlation induced by the experimental design. The underlying model involves a hierarchical scale mixture model for the fixed effects, random effect, and residual error functions. These modeling assumptions across curves result in robust nonparametric estimators of the fixed and random effect functions which down-weight outlying curves and regions of curves, and produce statistics that can be used to flag global and local outliers. These assumptions also lead to distributions across wavelet coefficients that have outstanding sparsity and adaptive shrinkage properties, with great flexibility for the data to determine the sparsity and the heaviness of the tails. Together with the down-weighting of outliers, these within-curve properties lead to fixed and random effect function estimates that appear in our simulations to be remarkably adaptive in their ability to remove spurious features yet retain true features of the functions. We have developed general code to implement this fully Bayesian method that is automatic, requiring the user to only provide the functional data and design matrices. It is efficient enough to handle large datasets, and yields posterior samples of all model parameters that can be used to perform desired Bayesian estimation and inference. Although we present details for a specific implementation of the R-FMM using specific distributional choices in the hierarchical model, 1D functions, and wavelet transforms, the method can be applied more generally using other heavy-tailed distributions, higher dimensional functions (e.g., images), and using other invertible transformations as alternatives to wavelets. Supplementary materials for this article are available online." @default.
- W1981015491 created "2016-06-24" @default.
- W1981015491 creator A5001295453 @default.
- W1981015491 creator A5023737066 @default.
- W1981015491 creator A5060064357 @default.
- W1981015491 date "2011-09-01" @default.
- W1981015491 modified "2023-10-02" @default.
- W1981015491 title "Robust, Adaptive Functional Regression in Functional Mixed Model Framework" @default.
- W1981015491 cites W1964809923 @default.
- W1981015491 cites W1966411627 @default.
- W1981015491 cites W1982652137 @default.
- W1981015491 cites W1982959792 @default.
- W1981015491 cites W1991108537 @default.
- W1981015491 cites W1998966727 @default.
- W1981015491 cites W2019302122 @default.
- W1981015491 cites W2020925091 @default.
- W1981015491 cites W2024251810 @default.
- W1981015491 cites W2037083183 @default.
- W1981015491 cites W2037153463 @default.
- W1981015491 cites W2044346605 @default.
- W1981015491 cites W2049002789 @default.
- W1981015491 cites W2053695046 @default.
- W1981015491 cites W2063016434 @default.
- W1981015491 cites W2078957532 @default.
- W1981015491 cites W2096599909 @default.
- W1981015491 cites W2097446620 @default.
- W1981015491 cites W2104680149 @default.
- W1981015491 cites W2106575405 @default.
- W1981015491 cites W2114169935 @default.
- W1981015491 cites W2124449497 @default.
- W1981015491 cites W2126663476 @default.
- W1981015491 cites W2126897927 @default.
- W1981015491 cites W2131668296 @default.
- W1981015491 cites W2131946120 @default.
- W1981015491 cites W2138071406 @default.
- W1981015491 cites W2141055931 @default.
- W1981015491 cites W2144510733 @default.
- W1981015491 cites W2148071000 @default.
- W1981015491 cites W2158869949 @default.
- W1981015491 cites W2160068277 @default.
- W1981015491 cites W2949537047 @default.
- W1981015491 cites W3102423633 @default.
- W1981015491 cites W3103346097 @default.
- W1981015491 cites W4239329468 @default.
- W1981015491 cites W4242746719 @default.
- W1981015491 doi "https://doi.org/10.1198/jasa.2011.tm10370" @default.
- W1981015491 hasPubMedCentralId "https://www.ncbi.nlm.nih.gov/pmc/articles/3270884" @default.
- W1981015491 hasPubMedId "https://pubmed.ncbi.nlm.nih.gov/22308015" @default.
- W1981015491 hasPublicationYear "2011" @default.
- W1981015491 type Work @default.
- W1981015491 sameAs 1981015491 @default.
- W1981015491 citedByCount "71" @default.
- W1981015491 countsByYear W19810154912012 @default.
- W1981015491 countsByYear W19810154912013 @default.
- W1981015491 countsByYear W19810154912014 @default.
- W1981015491 countsByYear W19810154912015 @default.
- W1981015491 countsByYear W19810154912016 @default.
- W1981015491 countsByYear W19810154912017 @default.
- W1981015491 countsByYear W19810154912018 @default.
- W1981015491 countsByYear W19810154912019 @default.
- W1981015491 countsByYear W19810154912020 @default.
- W1981015491 countsByYear W19810154912021 @default.
- W1981015491 countsByYear W19810154912022 @default.
- W1981015491 countsByYear W19810154912023 @default.
- W1981015491 crossrefType "journal-article" @default.
- W1981015491 hasAuthorship W1981015491A5001295453 @default.
- W1981015491 hasAuthorship W1981015491A5023737066 @default.
- W1981015491 hasAuthorship W1981015491A5060064357 @default.
- W1981015491 hasBestOaLocation W19810154912 @default.
- W1981015491 hasConcept C102366305 @default.
- W1981015491 hasConcept C105795698 @default.
- W1981015491 hasConcept C111030470 @default.
- W1981015491 hasConcept C126322002 @default.
- W1981015491 hasConcept C126838900 @default.
- W1981015491 hasConcept C161584116 @default.
- W1981015491 hasConcept C168743327 @default.
- W1981015491 hasConcept C183115368 @default.
- W1981015491 hasConcept C185429906 @default.
- W1981015491 hasConcept C199163554 @default.
- W1981015491 hasConcept C203223496 @default.
- W1981015491 hasConcept C33923547 @default.
- W1981015491 hasConcept C51820054 @default.
- W1981015491 hasConcept C5274069 @default.
- W1981015491 hasConcept C67226441 @default.
- W1981015491 hasConcept C70259352 @default.
- W1981015491 hasConcept C71176878 @default.
- W1981015491 hasConcept C71924100 @default.
- W1981015491 hasConcept C74127309 @default.
- W1981015491 hasConcept C79337645 @default.
- W1981015491 hasConcept C83546350 @default.
- W1981015491 hasConcept C95190672 @default.
- W1981015491 hasConceptScore W1981015491C102366305 @default.
- W1981015491 hasConceptScore W1981015491C105795698 @default.
- W1981015491 hasConceptScore W1981015491C111030470 @default.
- W1981015491 hasConceptScore W1981015491C126322002 @default.
- W1981015491 hasConceptScore W1981015491C126838900 @default.
- W1981015491 hasConceptScore W1981015491C161584116 @default.
- W1981015491 hasConceptScore W1981015491C168743327 @default.