Matches in SemOpenAlex for { <https://semopenalex.org/work/W1981059416> ?p ?o ?g. }
- W1981059416 endingPage "084701" @default.
- W1981059416 startingPage "084701" @default.
- W1981059416 abstract "Electron magnetic resonance (EMR) spectroscopy was used to determine the magnetic properties of maghemite (γ-Fe(2)O(3)) nanoparticles formed within size-constraining Listeria innocua (LDps)-(DNA-binding protein from starved cells) protein cages that have an inner diameter of 5 nm. Variable-temperature X-band EMR spectra exhibited broad asymmetric resonances with a superimposed narrow peak at a gyromagnetic factor of g ≈ 2. The resonance structure, which depends on both superparamagnetic fluctuations and inhomogeneous broadening, changes dramatically as a function of temperature, and the overall linewidth becomes narrower with increasing temperature. Here, we compare two different models to simulate temperature-dependent lineshape trends. The temperature dependence for both models is derived from a Langevin behavior of the linewidth resulting from anisotropy melting. The first uses either a truncated log-normal distribution of particle sizes or a bi-modal distribution and then a Landau-Liftshitz lineshape to describe the nanoparticle resonances. The essential feature of this model is that small particles have narrow linewidths and account for the g ≈ 2 feature with a constant resonance field, whereas larger particles have broad linewidths and undergo a shift in resonance field. The second model assumes uniform particles with a diameter around 4 nm and a random distribution of uniaxial anisotropy axes. This model uses a more precise calculation of the linewidth due to superparamagnetic fluctuations and a random distribution of anisotropies. Sharp features in the spectrum near g ≈ 2 are qualitatively predicted at high temperatures. Both models can account for many features of the observed spectra, although each has deficiencies. The first model leads to a nonphysical increase in magnetic moment as the temperature is increased if a log normal distribution of particles sizes is used. Introducing a bi-modal distribution of particle sizes resolves the unphysical increase in moment with temperature. The second model predicts low-temperature spectra that differ significantly from the observed spectra. The anisotropy energy density K(1), determined by fitting the temperature-dependent linewidths, was ∼50 kJ/m(3), which is considerably larger than that of bulk maghemite. The work presented here indicates that the magnetic properties of these size-constrained nanoparticles and more generally metal oxide nanoparticles with diameters d < 5 nm are complex and that currently existing models are not sufficient for determining their magnetic resonance signatures." @default.
- W1981059416 created "2016-06-24" @default.
- W1981059416 creator A5006725047 @default.
- W1981059416 creator A5008246251 @default.
- W1981059416 creator A5015656102 @default.
- W1981059416 creator A5046612762 @default.
- W1981059416 creator A5048720198 @default.
- W1981059416 creator A5049837152 @default.
- W1981059416 creator A5052644960 @default.
- W1981059416 creator A5081490632 @default.
- W1981059416 date "2012-10-15" @default.
- W1981059416 modified "2023-09-27" @default.
- W1981059416 title "Temperature dependence of electron magnetic resonance spectra of iron oxide nanoparticles mineralized in<i>Listeria innocua</i>protein cages" @default.
- W1981059416 cites W1517434584 @default.
- W1981059416 cites W1964275463 @default.
- W1981059416 cites W1966398472 @default.
- W1981059416 cites W1974854961 @default.
- W1981059416 cites W1975170877 @default.
- W1981059416 cites W1975708582 @default.
- W1981059416 cites W1991214939 @default.
- W1981059416 cites W1993557858 @default.
- W1981059416 cites W1996638883 @default.
- W1981059416 cites W2000334568 @default.
- W1981059416 cites W2004641571 @default.
- W1981059416 cites W2021487595 @default.
- W1981059416 cites W2022541418 @default.
- W1981059416 cites W2022810388 @default.
- W1981059416 cites W2024600233 @default.
- W1981059416 cites W2025889014 @default.
- W1981059416 cites W2028914600 @default.
- W1981059416 cites W2032961805 @default.
- W1981059416 cites W2036818509 @default.
- W1981059416 cites W2041756160 @default.
- W1981059416 cites W2042153184 @default.
- W1981059416 cites W2044903651 @default.
- W1981059416 cites W2045192566 @default.
- W1981059416 cites W2048027743 @default.
- W1981059416 cites W2060874027 @default.
- W1981059416 cites W2061447049 @default.
- W1981059416 cites W2065591786 @default.
- W1981059416 cites W2072605341 @default.
- W1981059416 cites W2080150861 @default.
- W1981059416 cites W2082167706 @default.
- W1981059416 cites W2093881291 @default.
- W1981059416 cites W2118717606 @default.
- W1981059416 cites W2120527290 @default.
- W1981059416 cites W2125439769 @default.
- W1981059416 cites W2137936410 @default.
- W1981059416 cites W2140227592 @default.
- W1981059416 cites W2143527678 @default.
- W1981059416 cites W2171919355 @default.
- W1981059416 cites W2181463159 @default.
- W1981059416 cites W2333636414 @default.
- W1981059416 cites W2420779654 @default.
- W1981059416 cites W4245672533 @default.
- W1981059416 doi "https://doi.org/10.1063/1.4757964" @default.
- W1981059416 hasPubMedCentralId "https://www.ncbi.nlm.nih.gov/pmc/articles/3487924" @default.
- W1981059416 hasPubMedId "https://pubmed.ncbi.nlm.nih.gov/23152643" @default.
- W1981059416 hasPublicationYear "2012" @default.
- W1981059416 type Work @default.
- W1981059416 sameAs 1981059416 @default.
- W1981059416 citedByCount "18" @default.
- W1981059416 countsByYear W19810594162014 @default.
- W1981059416 countsByYear W19810594162015 @default.
- W1981059416 countsByYear W19810594162016 @default.
- W1981059416 countsByYear W19810594162017 @default.
- W1981059416 countsByYear W19810594162018 @default.
- W1981059416 countsByYear W19810594162020 @default.
- W1981059416 countsByYear W19810594162021 @default.
- W1981059416 countsByYear W19810594162023 @default.
- W1981059416 crossrefType "journal-article" @default.
- W1981059416 hasAuthorship W1981059416A5006725047 @default.
- W1981059416 hasAuthorship W1981059416A5008246251 @default.
- W1981059416 hasAuthorship W1981059416A5015656102 @default.
- W1981059416 hasAuthorship W1981059416A5046612762 @default.
- W1981059416 hasAuthorship W1981059416A5048720198 @default.
- W1981059416 hasAuthorship W1981059416A5049837152 @default.
- W1981059416 hasAuthorship W1981059416A5052644960 @default.
- W1981059416 hasAuthorship W1981059416A5081490632 @default.
- W1981059416 hasBestOaLocation W19810594162 @default.
- W1981059416 hasConcept C115260700 @default.
- W1981059416 hasConcept C120665830 @default.
- W1981059416 hasConcept C121332964 @default.
- W1981059416 hasConcept C1276947 @default.
- W1981059416 hasConcept C139210041 @default.
- W1981059416 hasConcept C142181693 @default.
- W1981059416 hasConcept C184779094 @default.
- W1981059416 hasConcept C185592680 @default.
- W1981059416 hasConcept C187961010 @default.
- W1981059416 hasConcept C188641701 @default.
- W1981059416 hasConcept C192562407 @default.
- W1981059416 hasConcept C23792430 @default.
- W1981059416 hasConcept C26873012 @default.
- W1981059416 hasConcept C32546565 @default.
- W1981059416 hasConcept C41999313 @default.
- W1981059416 hasConcept C43922652 @default.
- W1981059416 hasConcept C46141821 @default.
- W1981059416 hasConcept C4839761 @default.