Matches in SemOpenAlex for { <https://semopenalex.org/work/W1981069524> ?p ?o ?g. }
- W1981069524 endingPage "1415" @default.
- W1981069524 startingPage "1406" @default.
- W1981069524 abstract "Many efforts have been made to discover novel bio-markers for early disease detection in oncology. However, the lack of efficient computational strategies impedes the discovery of disease-specific biomarkers for better understanding and management of treatment outcomes. In this study, we propose a novel graph-based scoring function to rank and identify the most robust biomarkers from limited proteomics data. The proposed method measures the proximity between candidate proteins identified by mass spectrometry (MS) analysis utilizing prior reported knowledge in the literature. Recent advances in mass spectrometry provide new opportunities to identify unique biomarkers from peripheral blood samples in complex treatment modalities such as radiation therapy (radiotherapy), which enables early disease detection, disease progression monitoring, and targeted intervention. Specifically, the dose-limiting role of radiation-induced lung injury known as radiation pneumonitis (RP) in lung cancer patients receiving radiotherapy motivates the search for robust predictive biomarkers. In this case study, plasma from 26 locally advanced non-small cell lung cancer (NSCLC) patients treated with radiotherapy in a longitudinal 3 × 3 matched-control cohort was fractionated using in-line, sequential multiaffinity chromatography. The complex peptide mixtures from endoprotease digestions were analyzed using comparative, high-resolution liquid chromatography (LC)−MS to identify and quantify differential peptide signals. Through analysis of survey mass spectra and annotations of peptides from the tandem spectra, we found candidate proteins that appear to be associated with RP. On the basis of the proposed methodology, α-2-macroglobulin (α2M) was unambiguously ranked as the top candidate protein. As independent validation of this candidate protein, enzyme-linked immunosorbent assay (ELISA) experiments were performed on independent cohort of 20 patients’ samples resulting in early significant discrimination between RP and non-RP patients (p = 0.002). These results suggest that the proposed methodology based on longitudinal proteomics analysis and a novel bioinformatics ranking algorithm is a potentially promising approach for the challenging problem of identifying relevant biomarkers in sample-limited clinical applications." @default.
- W1981069524 created "2016-06-24" @default.
- W1981069524 creator A5002507883 @default.
- W1981069524 creator A5010597773 @default.
- W1981069524 creator A5026159944 @default.
- W1981069524 creator A5044189301 @default.
- W1981069524 creator A5063940602 @default.
- W1981069524 creator A5078855608 @default.
- W1981069524 date "2011-02-16" @default.
- W1981069524 modified "2023-09-30" @default.
- W1981069524 title "A Bioinformatics Approach for Biomarker Identification in Radiation-Induced Lung Inflammation from Limited Proteomics Data" @default.
- W1981069524 cites W1486817521 @default.
- W1981069524 cites W1488137278 @default.
- W1981069524 cites W1510527226 @default.
- W1981069524 cites W1965607965 @default.
- W1981069524 cites W1965654523 @default.
- W1981069524 cites W1969563784 @default.
- W1981069524 cites W1977778982 @default.
- W1981069524 cites W1992996147 @default.
- W1981069524 cites W1993767621 @default.
- W1981069524 cites W2004843282 @default.
- W1981069524 cites W2005853648 @default.
- W1981069524 cites W2015053020 @default.
- W1981069524 cites W2017781650 @default.
- W1981069524 cites W2021689179 @default.
- W1981069524 cites W2027475100 @default.
- W1981069524 cites W2031889687 @default.
- W1981069524 cites W2033745703 @default.
- W1981069524 cites W2040876125 @default.
- W1981069524 cites W2045678013 @default.
- W1981069524 cites W2053029299 @default.
- W1981069524 cites W2057681962 @default.
- W1981069524 cites W2061790628 @default.
- W1981069524 cites W2062867565 @default.
- W1981069524 cites W2063345415 @default.
- W1981069524 cites W2068446135 @default.
- W1981069524 cites W2071150651 @default.
- W1981069524 cites W2072734882 @default.
- W1981069524 cites W2076267319 @default.
- W1981069524 cites W2080029544 @default.
- W1981069524 cites W2082304368 @default.
- W1981069524 cites W2095109618 @default.
- W1981069524 cites W2109087301 @default.
- W1981069524 cites W2109757508 @default.
- W1981069524 cites W2112881933 @default.
- W1981069524 cites W2116307402 @default.
- W1981069524 cites W2122135161 @default.
- W1981069524 cites W2125003991 @default.
- W1981069524 cites W2128393152 @default.
- W1981069524 cites W2141977697 @default.
- W1981069524 cites W2147950078 @default.
- W1981069524 cites W2148966913 @default.
- W1981069524 cites W2149061499 @default.
- W1981069524 cites W2153968126 @default.
- W1981069524 cites W2157119187 @default.
- W1981069524 cites W2163228745 @default.
- W1981069524 cites W3199143553 @default.
- W1981069524 cites W4211208250 @default.
- W1981069524 doi "https://doi.org/10.1021/pr101226q" @default.
- W1981069524 hasPubMedCentralId "https://www.ncbi.nlm.nih.gov/pmc/articles/3127583" @default.
- W1981069524 hasPubMedId "https://pubmed.ncbi.nlm.nih.gov/21226504" @default.
- W1981069524 hasPublicationYear "2011" @default.
- W1981069524 type Work @default.
- W1981069524 sameAs 1981069524 @default.
- W1981069524 citedByCount "43" @default.
- W1981069524 countsByYear W19810695242012 @default.
- W1981069524 countsByYear W19810695242013 @default.
- W1981069524 countsByYear W19810695242014 @default.
- W1981069524 countsByYear W19810695242015 @default.
- W1981069524 countsByYear W19810695242016 @default.
- W1981069524 countsByYear W19810695242017 @default.
- W1981069524 countsByYear W19810695242018 @default.
- W1981069524 countsByYear W19810695242019 @default.
- W1981069524 countsByYear W19810695242020 @default.
- W1981069524 countsByYear W19810695242022 @default.
- W1981069524 countsByYear W19810695242023 @default.
- W1981069524 crossrefType "journal-article" @default.
- W1981069524 hasAuthorship W1981069524A5002507883 @default.
- W1981069524 hasAuthorship W1981069524A5010597773 @default.
- W1981069524 hasAuthorship W1981069524A5026159944 @default.
- W1981069524 hasAuthorship W1981069524A5044189301 @default.
- W1981069524 hasAuthorship W1981069524A5063940602 @default.
- W1981069524 hasAuthorship W1981069524A5078855608 @default.
- W1981069524 hasBestOaLocation W19810695242 @default.
- W1981069524 hasConcept C104317684 @default.
- W1981069524 hasConcept C124535831 @default.
- W1981069524 hasConcept C162356407 @default.
- W1981069524 hasConcept C185592680 @default.
- W1981069524 hasConcept C2781197716 @default.
- W1981069524 hasConcept C31827203 @default.
- W1981069524 hasConcept C43617362 @default.
- W1981069524 hasConcept C46111723 @default.
- W1981069524 hasConcept C55493867 @default.
- W1981069524 hasConcept C60644358 @default.
- W1981069524 hasConcept C70721500 @default.
- W1981069524 hasConcept C71924100 @default.
- W1981069524 hasConcept C86803240 @default.
- W1981069524 hasConceptScore W1981069524C104317684 @default.