Matches in SemOpenAlex for { <https://semopenalex.org/work/W1981128391> ?p ?o ?g. }
- W1981128391 endingPage "418" @default.
- W1981128391 startingPage "409" @default.
- W1981128391 abstract "Emissions from primary and secondary lead (Pb) smelters are responsible for high concentrations of metallic contaminants (Pb, Cd and Zn) in soils. However, less attention has been paid to volatile metalloids, such as antimony (Sb), which accompanies Pb smelting activities. This paper is focused on geochemistry of Sb in the forest and agricultural soils in the vicinity of the Příbram Pb smelter (Czech Republic), with emphasis on Sb distribution, chemical fractionation and comparison with the behaviour of another toxic metalloid, arsenic (As). Forest soils were enriched in Sb (4.86–2058 mg kg− 1, mean: 379 mg kg− 1, median: 155 mg kg− 1) with the highest concentrations in the organic horizons. Arsenic was found in significantly lower concentrations in forest soils (9.16–447 mg kg− 1, mean: 127 mg kg− 1, median: 82.9 mg kg− 1). High concentrations of metalloids in forest soils are related to higher interception of smelter emissions by tree canopies. The Sb/As concentrations ratios ranged between 4.6 and 16.4 in the organic soil horizons, which is in agreement with (i) higher Sb deposition between ∼ 1890 and the 1970s as recorded by 210-Pb dated peat cores from the vicinity of the smelter and (ii) rare historical analytical data on processed concentrates and dust from the smelter flue-gas cleaning system. In contrast to organic horizons of forest soils, the concentrations of the two metalloids are rather similar in agricultural soils and in mineral horizons of the forest soils. Antimony concentrations in agricultural soils were in the range 3.12–131 mg kg− 1 (mean: 39.3 mg kg− 1, median: 23.8 mg kg− 1), whereas As concentrations were in the range 4.33–154 mg kg− 1 (mean: 60.3 mg kg− 1, median: 42.5 mg kg− 1). Factor analysis showed that Sb and As are statistically correlated to oxalate-extractable Fe, corresponding to amorphous or less crystalline Fe-oxides. The 5-step sequential extraction procedure (SEP), which was originally designed for As, and revised BCR SEP were applied to chemically fractionate Sb and As in the most polluted soil profiles. In forest soils, Sb was mostly bound in residual fraction with “mobile” concentrations in the range of 0.6–4% of the total Sb content. In contrast, As was significantly more mobile (1.2–22% of the total content in the “mobile” fractions) with dominant binding to Fe-oxides (up to 57% of total As content). In agricultural soils, Sb was again less “mobile” than As (1.4–5.9% and 0.34–12.1%, respectively of the total concentrations). Whereas Sb was mainly bound to the residual fraction and partly also in the reducible fraction (Fe-oxides), As was predominantly bound to Fe-oxides (up to 71% of the total As content). Good agreement was observed between the two SEP methods in determining the “mobile” concentrations of the metalloids (R2Sb = 0.9918 and R2As = 0.9104, p < 0.001). Despite probable similarities in the geochemical behaviour of these two metalloids in polluted soil systems, this study indicates that As is chemically more mobile than Sb." @default.
- W1981128391 created "2016-06-24" @default.
- W1981128391 creator A5026165387 @default.
- W1981128391 creator A5044461631 @default.
- W1981128391 creator A5047727185 @default.
- W1981128391 creator A5048683271 @default.
- W1981128391 creator A5065367743 @default.
- W1981128391 creator A5072536198 @default.
- W1981128391 date "2010-03-01" @default.
- W1981128391 modified "2023-10-06" @default.
- W1981128391 title "Antimony mobility in lead smelter-polluted soils" @default.
- W1981128391 cites W1576715487 @default.
- W1981128391 cites W1667273974 @default.
- W1981128391 cites W1964279456 @default.
- W1981128391 cites W1967641638 @default.
- W1981128391 cites W1968991600 @default.
- W1981128391 cites W1969157741 @default.
- W1981128391 cites W1974144564 @default.
- W1981128391 cites W1975390183 @default.
- W1981128391 cites W1978674504 @default.
- W1981128391 cites W1980587665 @default.
- W1981128391 cites W1984701668 @default.
- W1981128391 cites W1994367365 @default.
- W1981128391 cites W1999688870 @default.
- W1981128391 cites W2014491511 @default.
- W1981128391 cites W2018567960 @default.
- W1981128391 cites W2022891651 @default.
- W1981128391 cites W2023547475 @default.
- W1981128391 cites W2030112809 @default.
- W1981128391 cites W2032988771 @default.
- W1981128391 cites W2043288354 @default.
- W1981128391 cites W2045335122 @default.
- W1981128391 cites W2050898082 @default.
- W1981128391 cites W2056250855 @default.
- W1981128391 cites W2067905998 @default.
- W1981128391 cites W2068034161 @default.
- W1981128391 cites W2072676924 @default.
- W1981128391 cites W2077128631 @default.
- W1981128391 cites W2084705997 @default.
- W1981128391 cites W2085489642 @default.
- W1981128391 cites W2087862149 @default.
- W1981128391 cites W2091381715 @default.
- W1981128391 cites W2110533997 @default.
- W1981128391 cites W2121544075 @default.
- W1981128391 cites W2124667203 @default.
- W1981128391 cites W2143836682 @default.
- W1981128391 cites W2144349737 @default.
- W1981128391 cites W2149043005 @default.
- W1981128391 cites W3164864134 @default.
- W1981128391 cites W49092827 @default.
- W1981128391 doi "https://doi.org/10.1016/j.geoderma.2009.12.027" @default.
- W1981128391 hasPublicationYear "2010" @default.
- W1981128391 type Work @default.
- W1981128391 sameAs 1981128391 @default.
- W1981128391 citedByCount "59" @default.
- W1981128391 countsByYear W19811283912012 @default.
- W1981128391 countsByYear W19811283912013 @default.
- W1981128391 countsByYear W19811283912014 @default.
- W1981128391 countsByYear W19811283912015 @default.
- W1981128391 countsByYear W19811283912016 @default.
- W1981128391 countsByYear W19811283912017 @default.
- W1981128391 countsByYear W19811283912018 @default.
- W1981128391 countsByYear W19811283912019 @default.
- W1981128391 countsByYear W19811283912020 @default.
- W1981128391 countsByYear W19811283912021 @default.
- W1981128391 countsByYear W19811283912022 @default.
- W1981128391 countsByYear W19811283912023 @default.
- W1981128391 crossrefType "journal-article" @default.
- W1981128391 hasAuthorship W1981128391A5026165387 @default.
- W1981128391 hasAuthorship W1981128391A5044461631 @default.
- W1981128391 hasAuthorship W1981128391A5047727185 @default.
- W1981128391 hasAuthorship W1981128391A5048683271 @default.
- W1981128391 hasAuthorship W1981128391A5065367743 @default.
- W1981128391 hasAuthorship W1981128391A5072536198 @default.
- W1981128391 hasConcept C107872376 @default.
- W1981128391 hasConcept C157247726 @default.
- W1981128391 hasConcept C159390177 @default.
- W1981128391 hasConcept C159750122 @default.
- W1981128391 hasConcept C178790620 @default.
- W1981128391 hasConcept C179104552 @default.
- W1981128391 hasConcept C185592680 @default.
- W1981128391 hasConcept C22947924 @default.
- W1981128391 hasConcept C39432304 @default.
- W1981128391 hasConcept C48743137 @default.
- W1981128391 hasConcept C502230775 @default.
- W1981128391 hasConcept C541565711 @default.
- W1981128391 hasConcept C544153396 @default.
- W1981128391 hasConcept C77288539 @default.
- W1981128391 hasConceptScore W1981128391C107872376 @default.
- W1981128391 hasConceptScore W1981128391C157247726 @default.
- W1981128391 hasConceptScore W1981128391C159390177 @default.
- W1981128391 hasConceptScore W1981128391C159750122 @default.
- W1981128391 hasConceptScore W1981128391C178790620 @default.
- W1981128391 hasConceptScore W1981128391C179104552 @default.
- W1981128391 hasConceptScore W1981128391C185592680 @default.
- W1981128391 hasConceptScore W1981128391C22947924 @default.
- W1981128391 hasConceptScore W1981128391C39432304 @default.
- W1981128391 hasConceptScore W1981128391C48743137 @default.