Matches in SemOpenAlex for { <https://semopenalex.org/work/W1981195905> ?p ?o ?g. }
- W1981195905 endingPage "17" @default.
- W1981195905 startingPage "3" @default.
- W1981195905 abstract "This paper provides a roadmap of development in the thermal and fabrication aspects of microchannels as applied in microelectronics and other high heat-flux cooling applications. Microchannels are defined as flow passages that have hydraulic diameters in the range of 10 to 200 micrometers. The impetus for microchannel research was provided by the pioneering work of Tuckerman and Pease [1] at Stanford University in the early eighties. Since that time, this technology has received considerable attention in microelectronics and other major application areas, such as fuel cell systems and advanced heat sink designs. After reviewing the advancement in heat transfer technology from a historical perspective, the advantages of using microchannels in high heat flux cooling applications is discussed, and research done on various aspects of microchannel heat exchanger performance is reviewed. Single-phase performance for liquids is still expected to be describable by conventional equations; however, the gas flow may be influenced by rarefaction effects. Two-phase flow is another topic that is still under active research. The evolution of research in microchannel flow passages has paralleled the advancements made in fabrication technology. The earliest microchannels were built in silicon wafers by anisotropic wet chemical etching and sawing. While these methods have been exploited successfully, they impose a number of significant restrictions on channel geometry. A variety of advanced micromachining techniques have been developed since this early work. The current state of fabrication technology is reviewed, taxonomically organized, and found to offer many new possibilities for building microchannels. In particular anisotropic dry etching and other high aspect ratio techniques have removed many of the process-induced constraints on microchannel design. Other technologies such as surface micromachining, microstamping, hybridization, and system-on-chip integration will enable increasingly complex, highly functional heat transfer devices for the foreseeable future. It is also found that the formation of flow passages with hydraulic diameters below the microchannel regime will be readily possible with current fabrication techniques." @default.
- W1981195905 created "2016-06-24" @default.
- W1981195905 creator A5025168052 @default.
- W1981195905 creator A5085915344 @default.
- W1981195905 date "2003-01-01" @default.
- W1981195905 modified "2023-10-11" @default.
- W1981195905 title "Evolution of Microchannel Flow Passages--Thermohydraulic Performance and Fabrication Technology" @default.
- W1981195905 cites W1932951818 @default.
- W1981195905 cites W1965148421 @default.
- W1981195905 cites W1965669173 @default.
- W1981195905 cites W1965702561 @default.
- W1981195905 cites W1967822492 @default.
- W1981195905 cites W1976084626 @default.
- W1981195905 cites W1979078109 @default.
- W1981195905 cites W1979094907 @default.
- W1981195905 cites W1982845563 @default.
- W1981195905 cites W1982904495 @default.
- W1981195905 cites W1987349437 @default.
- W1981195905 cites W1996261713 @default.
- W1981195905 cites W2011187922 @default.
- W1981195905 cites W2021166075 @default.
- W1981195905 cites W2024885826 @default.
- W1981195905 cites W2027872603 @default.
- W1981195905 cites W2030559131 @default.
- W1981195905 cites W2035029815 @default.
- W1981195905 cites W2052630778 @default.
- W1981195905 cites W2070532945 @default.
- W1981195905 cites W2080757045 @default.
- W1981195905 cites W2081063279 @default.
- W1981195905 cites W2086025153 @default.
- W1981195905 cites W2088357735 @default.
- W1981195905 cites W2091077166 @default.
- W1981195905 cites W2094368312 @default.
- W1981195905 cites W2109129604 @default.
- W1981195905 cites W2117137892 @default.
- W1981195905 cites W2118795295 @default.
- W1981195905 cites W2120660956 @default.
- W1981195905 cites W2125771105 @default.
- W1981195905 cites W2126882412 @default.
- W1981195905 cites W2129681467 @default.
- W1981195905 cites W2131076635 @default.
- W1981195905 cites W2137095044 @default.
- W1981195905 cites W2137178805 @default.
- W1981195905 cites W2147598326 @default.
- W1981195905 cites W2156259175 @default.
- W1981195905 cites W2171424063 @default.
- W1981195905 cites W2171677346 @default.
- W1981195905 cites W2463637833 @default.
- W1981195905 cites W2545642468 @default.
- W1981195905 cites W2946789882 @default.
- W1981195905 cites W3118474676 @default.
- W1981195905 cites W586922167 @default.
- W1981195905 doi "https://doi.org/10.1080/01457630304040" @default.
- W1981195905 hasPublicationYear "2003" @default.
- W1981195905 type Work @default.
- W1981195905 sameAs 1981195905 @default.
- W1981195905 citedByCount "640" @default.
- W1981195905 countsByYear W19811959052012 @default.
- W1981195905 countsByYear W19811959052013 @default.
- W1981195905 countsByYear W19811959052014 @default.
- W1981195905 countsByYear W19811959052015 @default.
- W1981195905 countsByYear W19811959052016 @default.
- W1981195905 countsByYear W19811959052017 @default.
- W1981195905 countsByYear W19811959052018 @default.
- W1981195905 countsByYear W19811959052019 @default.
- W1981195905 countsByYear W19811959052020 @default.
- W1981195905 countsByYear W19811959052021 @default.
- W1981195905 countsByYear W19811959052022 @default.
- W1981195905 countsByYear W19811959052023 @default.
- W1981195905 crossrefType "journal-article" @default.
- W1981195905 hasAuthorship W1981195905A5025168052 @default.
- W1981195905 hasAuthorship W1981195905A5085915344 @default.
- W1981195905 hasBestOaLocation W19811959051 @default.
- W1981195905 hasConcept C107706546 @default.
- W1981195905 hasConcept C118227150 @default.
- W1981195905 hasConcept C121332964 @default.
- W1981195905 hasConcept C127413603 @default.
- W1981195905 hasConcept C136525101 @default.
- W1981195905 hasConcept C142724271 @default.
- W1981195905 hasConcept C145667562 @default.
- W1981195905 hasConcept C159188206 @default.
- W1981195905 hasConcept C160671074 @default.
- W1981195905 hasConcept C171250308 @default.
- W1981195905 hasConcept C186937647 @default.
- W1981195905 hasConcept C187937830 @default.
- W1981195905 hasConcept C192562407 @default.
- W1981195905 hasConcept C204787440 @default.
- W1981195905 hasConcept C32375409 @default.
- W1981195905 hasConcept C50517652 @default.
- W1981195905 hasConcept C57879066 @default.
- W1981195905 hasConcept C61696701 @default.
- W1981195905 hasConcept C63662833 @default.
- W1981195905 hasConcept C71924100 @default.
- W1981195905 hasConcept C78519656 @default.
- W1981195905 hasConceptScore W1981195905C107706546 @default.
- W1981195905 hasConceptScore W1981195905C118227150 @default.
- W1981195905 hasConceptScore W1981195905C121332964 @default.
- W1981195905 hasConceptScore W1981195905C127413603 @default.