Matches in SemOpenAlex for { <https://semopenalex.org/work/W1981266511> ?p ?o ?g. }
- W1981266511 endingPage "1587" @default.
- W1981266511 startingPage "1570" @default.
- W1981266511 abstract "Current supervised approaches, such as classification and regression methodologies, are strongly focused on optimizing estimation accuracy metrics, leaving the interpretation of the results produced as a secondary concern. However, in the analysis of complex systems, one of the main interests is precisely the induction of relevant associations, to understand or clarify the way the system operates. Two related frameworks for addressing supervised learning problems (classification and regression) are presented, that incorporate interpretational‐oriented analysis features right from the onset of the analysis. These features constrain the predictive space, in order to introduce interpretable elements in the final model. Interestingly, such constraints do not usually compromise the methods' performance, when compared to their unconstrained versions. The frameworks, called network‐induced classification ( NI‐C ), and network‐induced regression ( NI‐R ), share a common methodological backbone, and are described in detail, as well as applied to real‐world case studies. © 2012 American Institute of Chemical Engineers AIChE J, 59: 1570–1587, 2013" @default.
- W1981266511 created "2016-06-24" @default.
- W1981266511 creator A5006529383 @default.
- W1981266511 date "2012-12-26" @default.
- W1981266511 modified "2023-10-18" @default.
- W1981266511 title "Network-induced supervised learning: Network-induced classification (NI-C) and network-induced regression (NI-R)" @default.
- W1981266511 cites W1480376833 @default.
- W1981266511 cites W1487952959 @default.
- W1981266511 cites W1497922299 @default.
- W1981266511 cites W1966089218 @default.
- W1981266511 cites W1990283595 @default.
- W1981266511 cites W2000651380 @default.
- W1981266511 cites W2017987256 @default.
- W1981266511 cites W2018045523 @default.
- W1981266511 cites W2021873216 @default.
- W1981266511 cites W2031021677 @default.
- W1981266511 cites W2035269383 @default.
- W1981266511 cites W2039173688 @default.
- W1981266511 cites W2045052530 @default.
- W1981266511 cites W2050939168 @default.
- W1981266511 cites W2073503722 @default.
- W1981266511 cites W2082880760 @default.
- W1981266511 cites W2084373150 @default.
- W1981266511 cites W2086904869 @default.
- W1981266511 cites W2094382594 @default.
- W1981266511 cites W2097283481 @default.
- W1981266511 cites W2099380913 @default.
- W1981266511 cites W2119479037 @default.
- W1981266511 cites W2141104819 @default.
- W1981266511 cites W2151936673 @default.
- W1981266511 cites W2157082398 @default.
- W1981266511 cites W2158863190 @default.
- W1981266511 cites W2160333357 @default.
- W1981266511 cites W2164583936 @default.
- W1981266511 cites W2489605225 @default.
- W1981266511 cites W2502759836 @default.
- W1981266511 cites W2503993098 @default.
- W1981266511 cites W2974238426 @default.
- W1981266511 cites W4229940379 @default.
- W1981266511 cites W4230674625 @default.
- W1981266511 cites W4234698323 @default.
- W1981266511 doi "https://doi.org/10.1002/aic.13946" @default.
- W1981266511 hasPublicationYear "2012" @default.
- W1981266511 type Work @default.
- W1981266511 sameAs 1981266511 @default.
- W1981266511 citedByCount "18" @default.
- W1981266511 countsByYear W19812665112015 @default.
- W1981266511 countsByYear W19812665112016 @default.
- W1981266511 countsByYear W19812665112017 @default.
- W1981266511 countsByYear W19812665112018 @default.
- W1981266511 countsByYear W19812665112019 @default.
- W1981266511 countsByYear W19812665112020 @default.
- W1981266511 countsByYear W19812665112021 @default.
- W1981266511 countsByYear W19812665112022 @default.
- W1981266511 crossrefType "journal-article" @default.
- W1981266511 hasAuthorship W1981266511A5006529383 @default.
- W1981266511 hasConcept C105795698 @default.
- W1981266511 hasConcept C111919701 @default.
- W1981266511 hasConcept C119857082 @default.
- W1981266511 hasConcept C124101348 @default.
- W1981266511 hasConcept C136389625 @default.
- W1981266511 hasConcept C152877465 @default.
- W1981266511 hasConcept C154945302 @default.
- W1981266511 hasConcept C199360897 @default.
- W1981266511 hasConcept C2778572836 @default.
- W1981266511 hasConcept C33923547 @default.
- W1981266511 hasConcept C41008148 @default.
- W1981266511 hasConcept C48921125 @default.
- W1981266511 hasConcept C50644808 @default.
- W1981266511 hasConcept C527412718 @default.
- W1981266511 hasConcept C83546350 @default.
- W1981266511 hasConceptScore W1981266511C105795698 @default.
- W1981266511 hasConceptScore W1981266511C111919701 @default.
- W1981266511 hasConceptScore W1981266511C119857082 @default.
- W1981266511 hasConceptScore W1981266511C124101348 @default.
- W1981266511 hasConceptScore W1981266511C136389625 @default.
- W1981266511 hasConceptScore W1981266511C152877465 @default.
- W1981266511 hasConceptScore W1981266511C154945302 @default.
- W1981266511 hasConceptScore W1981266511C199360897 @default.
- W1981266511 hasConceptScore W1981266511C2778572836 @default.
- W1981266511 hasConceptScore W1981266511C33923547 @default.
- W1981266511 hasConceptScore W1981266511C41008148 @default.
- W1981266511 hasConceptScore W1981266511C48921125 @default.
- W1981266511 hasConceptScore W1981266511C50644808 @default.
- W1981266511 hasConceptScore W1981266511C527412718 @default.
- W1981266511 hasConceptScore W1981266511C83546350 @default.
- W1981266511 hasIssue "5" @default.
- W1981266511 hasLocation W19812665111 @default.
- W1981266511 hasOpenAccess W1981266511 @default.
- W1981266511 hasPrimaryLocation W19812665111 @default.
- W1981266511 hasRelatedWork W1915333409 @default.
- W1981266511 hasRelatedWork W1976866108 @default.
- W1981266511 hasRelatedWork W2092994918 @default.
- W1981266511 hasRelatedWork W2390006526 @default.
- W1981266511 hasRelatedWork W2393341384 @default.
- W1981266511 hasRelatedWork W2610868774 @default.
- W1981266511 hasRelatedWork W3215700490 @default.
- W1981266511 hasRelatedWork W3216594821 @default.